First tutorial on aTDEP¶

The 2^{nd} order effective Interatomic Force Constants (IFC)¶
This tutorial shows how to capture anharmonicities by means of an harmonic Temperature Dependent Effective Potential (TDEP) by using the ABINIT package. In practice, this requires to obtain the 2^{nd} order effective IFC. Once obtained, almost all the dynamic (phonons…), elastic (constants, moduli…) and thermodynamic (entropy, free energy…) desired quantities can be derived therefrom.
You will learn:
- how to launch aTDEP just after an ABINIT simulation,
 - the meaning and effects of the main input variables, and
 - how to exploit the data provided in the output files.
 
You are not supposed to know how to use ABINIT, but you are strongly encouraged to read the following documents:
- User guide: aTDEP guide
 - Theory: aTDEP paper corresponding to the article [Bottin2020]
 
This tutorial should take about 1.5 hour.
Note
Supposing you made your own installation of ABINIT, the input files to run the examples are in the ~abinit/tests/ directory where ~abinit is the absolute path of the abinit top-level directory. If you have NOT made your own install, ask your system administrator where to find the package, especially the executable and test files.
In case you work on your own PC or workstation, to make things easier, we suggest you define some handy environment variables by executing the following lines in the terminal:
export ABI_HOME=Replace_with_absolute_path_to_abinit_top_level_dir # Change this line
export PATH=$ABI_HOME/src/98_main/:$PATH      # Do not change this line: path to executable
export ABI_TESTS=$ABI_HOME/tests/             # Do not change this line: path to tests dir
export ABI_PSPDIR=$ABI_TESTS/Psps_for_tests/  # Do not change this line: path to pseudos dir
Examples in this tutorial use these shell variables: copy and paste
the code snippets into the terminal (remember to set ABI_HOME first!) or, alternatively,
source the set_abienv.sh script located in the ~abinit directory:
source ~abinit/set_abienv.sh
The ‘export PATH’ line adds the directory containing the executables to your PATH so that you can invoke the code by simply typing abinit in the terminal instead of providing the absolute path.
To execute the tutorials, create a working directory (Work*) and
copy there the input files of the lesson.
Most of the tutorials do not rely on parallelism (except specific tutorials on parallelism). However you can run most of the tutorial examples in parallel with MPI, see the topic on parallelism.
1. Summary of the aTDEP method¶
The Temperature Dependent Effective Potential approach has been introduced by O. Hellman et al. [Hellman2011] in 2011. The purpose of this method is to capture the anharmonic effects in an effective way.
Let us consider that the potential energy U of a crystal can be rewritten as a Taylor expansion around the equilibrium:
In this equation, and in the following, the Latin letters in subscripts i, j, k... and the Greek letters in superscripts \alpha, \beta, \gamma… will define the atoms and the cartesian directions, respectively.
with U_0 the minimum of the potential energy, u the displacement with respect to equilibrium, and \overset{(p)}{\Phi}=\left(\frac{\partial^p U}{\partial u_1 ... \partial u_p}\right)_0 the p^{th} order IFC, respectively. As a first approach (we will see in the second tutorial how to go beyond), let us assume that :
- 
the previous equation is truncated at the 2^{nd} order such as : $$ U= U_0 + \frac{1}{2!}\sum_{ij,\alpha\beta} \overset{(2)}{\Theta}\vphantom{\Theta}_{ij}^{\alpha\beta} u_i^\alpha u_j^\beta + 0(u^3) $$
 - 
a set of N_t forces \mathbf{F}_{AIMD}(t) and displacements \mathbf{u}_{AIMD}(t) is obtained using ab initio molecular dynamic (AIMD) simulations, leading to the following system of equations (F=-\nabla U):
 
It is then possible to obtain the 2nd order effective IFC \overset{(2)}{\Theta} by using a least squares method : \mathbf{\overset{(2)}{\Theta}} = \mathbf{F} . \mathbf{u}^{-1}. This fitting procedure modifies the 2nd order IFC by including (in an effective way) the anharmonic contributions coming from the terms above the truncation. Therefore, the IFC are no longer constant and become temperature dependent. That is the reason why we change the notation: in the following, the \Phi will be referred to as the ‘‘true IFC’’ and the \Theta as the ‘‘effective IFC’’.
2. A simple case : Al-fcc¶
Let us begin with the face centered cubic (fcc) phase of aluminum. This one is very simple for many reasons :
- There is only one atom in the unitcell so we will have only three phonon branches in the spectrum.
 - At 0 GPa, the fcc phase is stable from 0 K up to the melting so we do not expect any trouble coming from phonon instabilities.
 
Before beginning, you might consider to work in a different subdirectory as for the other tutorials. Why not create Work_atdep1_1 in $ABI_TESTS/tutoatdep/Input? You can copy all the input files within.
cd $ABI_TESTS/tutoatdep/Input
mkdir Work_atdep1_1
cd Work_atdep1_1
cp ../tatdep1_1.* . 
2.1 The input files¶
Let us discuss the meaning of these five files :
2.1.1 The data files tatdep1_1xred.dat, tatdep1_1fcart.dat and tatdep1_1etotal.dat¶
These ones store some data coming from the AIMD simulations : the reduced coordinates, the cartesian forces and the total energy of all the atoms in the supercell, respectively. In the present example, only 20 snapshots are extracted from a very long trajectory with thousands molecular dynamic time steps.
2.1.2 The input file tatdep1_1.abi¶
NormalMode #DEFINE_UNITCELL brav 7 -3 natom_unitcell 1 xred_unitcell 0.00000000000000000 0.00000000000000000 0.00000000000000000 typat_unitcell 1 ntypat 1 amu 2.6981539000000000000000E+01 #DEFINE_SUPERCELL rprimd 22.908999800000000 0.000000000000000 0.000000000000000 0.000000000000000 22.908999800000000 0.000000000000000 0.000000000000000 0.000000000000000 22.908999800000000 multiplicity -3 3 3 3 -3 3 3 3 -3 natom 108 typat 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 temperature 9.000000000000000000E+02 #DEFINE_COMPUTATIONAL_DETAILS nstep_max 20 nstep_min 1 rcut 11.450000000000000000000 #OPTIONAL_INPUT_VARIABLES enunit 3 TheEnd #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = atdep #%% md_hist = tatdep1_1 #%% [files] #%% files_to_test = #%% tatdep1_1.abo, tolnlines = 1, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% tatdep1_1omega.dat, tolnlines = 5, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% tatdep1_1thermo.dat, tolnlines = 5, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% [paral_info] #%% max_nprocs = 10 #%% [extra_info] #%% authors = F. Bottin & J. Bouchet #%% keywords = atdep #%% description = #%% test aTDEP #%% topics = aTDEP #%%<END TEST_INFO>
This one lists (in a formated way) all the input variables needed. In the following we will comment each variable and the value used for the present calculation. Many of them have the same meaning as in the ABINIT main code.
- For the unitcell :
 
| Input variable | Meaning | 
|---|---|
| brav | Defines the BRAVais lattice (as defined in the ABINIT code). For the present calculation (fcc) : 7 (cubic) and -3 (face centered). | 
| natom_unitcell | Defines the Number of ATOMs in the UNITCELL. For the present calculation : 1 | 
| xred_unitcell | Defines the Xyz REDuced coordinates in the UNITCELL. For the present calculation : 0.0 0.0 0.0 | 
| typat_unitcell | Defines the TYPes of AToms in the UNITCELL. For the present calculation : 1 | 
| ntypat | Defines the Number of TYPes of AToms. For the present calculation : 1 | 
| amu | Defines the Atomic masses in Mass Units. For the present calculation (Al) : 26.981539 | 
- For the supercell :
 
| Input variable | Meaning | 
|---|---|
| rprimd | Defines the Dimensional Real space PRMitive vectors of the SUPERCELL. For the present calculation : \begin{pmatrix} 22.9089998 & 0.0 & 0.0 \\ 0.0 & 22.9089998 & 0.0 \\ 0.0 & 0.0 & 22.9089998 \end{pmatrix} | 
| multiplicity | Defines the MULTIPLICITY of the SUPERCELL with respect to the primitive UNICELL. For the present calculation : \begin{pmatrix} -3 & 3 & 3 \\ 3 & -3 & 3 \\ 3 & 3 & -3 \end{pmatrix} | 
| natom | Defines the Number of ATOMs in the SUPERCELL. For the present calculation : 108 | 
| typat | Defines the TYPe of AToms in the SUPERCELL. For the present calculation : 108 * 1 | 
| temperature | Defines the TEMPERATURE of the system. For the present calculation : 900 K | 
- For the calculation :
 
| Input variable | Meaning | 
|---|---|
| nstep_max | Defines the upper limit in the range of configurations that one wants to use. For the present calculation : 20 | 
| nstep_min | Defines the lower limit in the range of configurations that one wants to use. For the present calculation : 1 | 
| rcut | Defines the CUToff Radius used to compute the second order IFCs. For the present calculation : 11.45 (\approx \frac{22.9089998}{2}) | 
- Optional :
 
| Input variable | Meaning | 
|---|---|
| enunit | Defines the ENergy UNIT used for the phonon spectrum. For the present calculation : 3 (in THz) | 
2.1.3 The files file tatdep1_1.files¶
This one lists the input file name and the root of input and output files :
tatdep1_1.abi tatdep1_1 tatdep1_1
You can now execute atdep:
atdep < tatdep1_1.files > log 2> err &
The code should run very quickly.
2.2 The output files¶
The atdep code writes many output files (some of them are available in *$ABI_TESTS/tutoatdep/Refs/). The reason is twofold : to remove all the “details” of the calculations from the main output file and to give all the thermodynamic data in an handable format. Let us detail these output files in the following :
2.2.1 The main output file tatdep1_1.abo¶
.Version    3.0 of PHONONS
.Copyright (C) 1998-2022 ABINIT group (FB,JB).
 ABINIT comes with ABSOLUTELY NO WARRANTY.
 It is free software, and you are welcome to redistribute it
 under certain conditions (GNU General Public License,
 see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
 ABINIT is a project of the Universite Catholique de Louvain,
 Corning Inc. and other collaborators, see
 ~abinit/doc/developers/contributors.txt .
 Please read https://docs.abinit.org/theory/acknowledgments for suggested
 acknowledgments of the ABINIT effort.
 For more information, see http://www.abinit.org .
.Starting date :  2 Mar 2021.
 #############################################################################
 ######################### ECHO OF INPUT FILE ################################
 #############################################################################
 ======================= Define the unitcell =================================
 brav                    7   -3
 natom_unitcell          1
 xred_unitcell       
                         0.0000000000    0.0000000000    0.0000000000
 typat_unitcell          1
 ntypat                  1
 amu                    26.9815390000
 ======================= Define the supercell ================================
 rprimd              
                        22.9089998000    0.0000000000    0.0000000000
                         0.0000000000   22.9089998000    0.0000000000
                         0.0000000000    0.0000000000   22.9089998000
 multiplicity        
                        -3.0000000000    3.0000000000    3.0000000000
                         3.0000000000   -3.0000000000    3.0000000000
                         3.0000000000    3.0000000000   -3.0000000000
 natom                 108
 typat               
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1    1    1
                         1    1    1    1    1    1    1    1
 temperature           900.0000000000
 ======================= Define computational details ========================
 nstep_max               20
 nstep_min                1
 rcut                   11.4500000000
 ======================= Optional input variables ============================
 enunit                  3 (Phonon frequencies in THz)
 USE AVERAGE POSITIONS TO COMPUTE SPECTRUM
-Number of processors    1    1
 All quantities are computed from nstep_min=    1
                               to nstep_max=   20
 So, the real number of time steps is nstep=   20
 The positions, forces and energies are extracted from the ASCII files: xred.dat, fcart.dat & etot.dat
 #############################################################################
 ########################## Computed quantities ##############################
 #############################################################################
 acell_unitcell=     7.6363332667     7.6363332667     7.6363332667
 rprimd_md=    22.9089998000     0.0000000000     0.0000000000
 rprimd_md=     0.0000000000    22.9089998000     0.0000000000
 rprimd_md=     0.0000000000     0.0000000000    22.9089998000
 bravais=    7   -3    1   -1    0    1    0    1    0   -1    1
 See the sym.dat file
 #############################################################################
 ########################## Q points generation  #############################
 #############################################################################
 Generate the BZ path using the Q points defined by default
 See the qpt.dat file
 #############################################################################
 ###### Find the matching between ideal and average positions  ###############
 #############################################################################
  Determine ideal positions and distances...
  Compute average positions...
  Search the unitcell basis of atoms in the MD trajectory...
  Compare ideal and average positions using PBC...
  Write the xred_average.xyz file with ideal and average positions...
  Compute cartesian coordinates and forces...
 #############################################################################
 ###################### Find the symetry operations ##########################
 #################### (connecting the atoms together) ########################
 #############################################################################
 Search the matrix transformation going from (k) to (i)...
 Search the matrix transformation going from (k,l) to (i,j)...
 See the Indsym*.dat files (if debug)
 #############################################################################
 ####### FIRST ORDER : find the number of coefficients #######################
 #############################################################################
  Build the ref1at and Isym1at tables...
  Build the Shell1at datatype...
  Number of shells=           1
 ============================================================================
 Shell number:           1
  For atom    1:
   Number of independant coefficients in this shell=           0
   Number of interactions in this shell=           0
 ============================================================================
   >>>>>> Total number of coefficients at the first order=           0
 #############################################################################
 ###### SECOND ORDER : find the number of coefficients #######################
 #############################################################################
  Build the ref2at and Isym2at tables...
  Build the Shell2at datatype...
  Number of shells=           5
 ============================================================================
 Shell number:           1
  Between atom    1 and     1 the distance is=    0.0000000000
   Number of independant coefficients in this shell=           0
   Number of interactions in this shell=           1
 ============================================================================
 Shell number:           2
  Between atom    1 and     2 the distance is=    5.3997030363
   Number of independant coefficients in this shell=           3
   Number of interactions in this shell=          12
 ============================================================================
 Shell number:           3
  Between atom    1 and     4 the distance is=    7.6363332667
   Number of independant coefficients in this shell=           2
   Number of interactions in this shell=           6
 ============================================================================
 Shell number:           4
  Between atom    1 and    10 the distance is=    9.3525600046
   Number of independant coefficients in this shell=           4
   Number of interactions in this shell=          24
 ============================================================================
 Shell number:           5
  Between atom    1 and    16 the distance is=   10.7994060725
   Number of independant coefficients in this shell=           3
   Number of interactions in this shell=          12
 ============================================================================
   >>>>>> Total number of coefficients at the second order=          12
 #############################################################################
 ############## Fill the matrices used in the pseudo-inverse #################
 #############################################################################
  Compute the coefficients (at the 1st order) used in the Moore-Penrose...
  ------- achieved
  Compute the coefficients (at the 2nd order) used in the Moore-Penrose...
  ------- achieved
 #############################################################################
 ###################### Compute the constraints ##############################
 ########################## At the 1st order #################################
 ########################## At the 2nd order #################################
 ################## Reduce the number of constraints #########################
 ############### (Solve simultaneously all the orders) #######################
 ################### And compute the pseudo-inverse ##########################
 #############################################################################
  The problem is solved
 #############################################################################
 #### For each shell, list of coefficients (IFC), number of neighbours... ####
 #############################################################################
 ############# List of (first order) IFC for the reference atom=   1
   0.000000  0.000000  0.000000
 #############################################################################
 #### For each shell, list of coefficients (IFC), number of neighbours... ####
 #############################################################################
 ############# List of (second order) IFC for the reference atom=   1
 ======== NEW SHELL (ishell=   1): There are   1 atoms on this shell at distance= 0.000000
  For jatom=   1 ,with type=   1
   0.044568  0.000000  0.000000
   0.000000  0.044568  0.000000
   0.000000  0.000000  0.044568
  The components of the vector are:    0.000000    0.000000    0.000000
  Trace=  0.133703
 ======== NEW SHELL (ishell=   2): There are  12 atoms on this shell at distance= 5.399703
  For jatom=   2 ,with type=   1
  -0.006188 -0.007055  0.000000
  -0.007055 -0.006188  0.000000
   0.000000  0.000000  0.001595
  The components of the vector are:    3.818167    3.818167    0.000000
  Trace= -0.010781
  For jatom=   3 ,with type=   1
  -0.006188  0.000000 -0.007055
   0.000000  0.001595  0.000000
  -0.007055  0.000000 -0.006188
  The components of the vector are:    3.818167    0.000000    3.818167
  Trace= -0.010781
  For jatom=   5 ,with type=   1
  -0.006188  0.007055  0.000000
   0.007055 -0.006188  0.000000
   0.000000  0.000000  0.001595
  The components of the vector are:   -3.818167    3.818167    0.000000
  Trace= -0.010781
  For jatom=   8 ,with type=   1
  -0.006188  0.000000  0.007055
   0.000000  0.001595  0.000000
   0.007055  0.000000 -0.006188
  The components of the vector are:   -3.818167    0.000000    3.818167
  Trace= -0.010781
  For jatom=   9 ,with type=   1
   0.001595  0.000000  0.000000
   0.000000 -0.006188 -0.007055
   0.000000 -0.007055 -0.006188
  The components of the vector are:    0.000000    3.818167    3.818167
  Trace= -0.010781
  For jatom=  19 ,with type=   1
  -0.006188  0.007055  0.000000
   0.007055 -0.006188  0.000000
   0.000000  0.000000  0.001595
  The components of the vector are:    3.818167   -3.818167    0.000000
  Trace= -0.010781
  For jatom=  34 ,with type=   1
  -0.006188  0.000000  0.007055
   0.000000  0.001595  0.000000
   0.007055  0.000000 -0.006188
  The components of the vector are:    3.818167    0.000000   -3.818167
  Trace= -0.010781
  For jatom=  38 ,with type=   1
  -0.006188 -0.007055  0.000000
  -0.007055 -0.006188  0.000000
   0.000000  0.000000  0.001595
  The components of the vector are:   -3.818167   -3.818167    0.000000
  Trace= -0.010781
  For jatom=  43 ,with type=   1
   0.001595  0.000000  0.000000
   0.000000 -0.006188  0.007055
   0.000000  0.007055 -0.006188
  The components of the vector are:    0.000000   -3.818167    3.818167
  Trace= -0.010781
  For jatom=  59 ,with type=   1
  -0.006188  0.000000 -0.007055
   0.000000  0.001595  0.000000
  -0.007055  0.000000 -0.006188
  The components of the vector are:   -3.818167    0.000000   -3.818167
  Trace= -0.010781
  For jatom=  60 ,with type=   1
   0.001595  0.000000  0.000000
   0.000000 -0.006188  0.007055
   0.000000  0.007055 -0.006188
  The components of the vector are:    0.000000    3.818167   -3.818167
  Trace= -0.010781
  For jatom= 101 ,with type=   1
   0.001595  0.000000  0.000000
   0.000000 -0.006188 -0.007055
   0.000000 -0.007055 -0.006188
  The components of the vector are:    0.000000   -3.818167   -3.818167
  Trace= -0.010781
 ======== NEW SHELL (ishell=   3): There are   6 atoms on this shell at distance= 7.636333
  For jatom=   4 ,with type=   1
  -0.000579  0.000000  0.000000
   0.000000  0.000955  0.000000
   0.000000  0.000000  0.000955
  The components of the vector are:   -7.636333    0.000000    0.000000
  Trace=  0.001331
  For jatom=   6 ,with type=   1
   0.000955  0.000000  0.000000
   0.000000 -0.000579  0.000000
   0.000000  0.000000  0.000955
  The components of the vector are:    0.000000    7.636333    0.000000
  Trace=  0.001331
  For jatom=  11 ,with type=   1
   0.000955  0.000000  0.000000
   0.000000  0.000955  0.000000
   0.000000  0.000000 -0.000579
  The components of the vector are:    0.000000    0.000000    7.636333
  Trace=  0.001331
  For jatom=  14 ,with type=   1
  -0.000579  0.000000  0.000000
   0.000000  0.000955  0.000000
   0.000000  0.000000  0.000955
  The components of the vector are:    7.636333    0.000000    0.000000
  Trace=  0.001331
  For jatom=  18 ,with type=   1
   0.000955  0.000000  0.000000
   0.000000 -0.000579  0.000000
   0.000000  0.000000  0.000955
  The components of the vector are:    0.000000   -7.636333    0.000000
  Trace=  0.001331
  For jatom=  32 ,with type=   1
   0.000955  0.000000  0.000000
   0.000000  0.000955  0.000000
   0.000000  0.000000 -0.000579
  The components of the vector are:    0.000000    0.000000   -7.636333
  Trace=  0.001331
 ======== NEW SHELL (ishell=   4): There are  24 atoms on this shell at distance= 9.352560
  For jatom=  10 ,with type=   1
  -0.000306  0.000038 -0.000026
   0.000038  0.000006  0.000038
  -0.000026  0.000038 -0.000306
  The components of the vector are:    3.818167    7.636333    3.818167
  Trace= -0.000606
  For jatom=  12 ,with type=   1
  -0.000306 -0.000026  0.000038
  -0.000026 -0.000306  0.000038
   0.000038  0.000038  0.000006
  The components of the vector are:    3.818167    3.818167    7.636333
  Trace= -0.000606
  For jatom=  21 ,with type=   1
   0.000006 -0.000038 -0.000038
  -0.000038 -0.000306 -0.000026
  -0.000038 -0.000026 -0.000306
  The components of the vector are:   -7.636333    3.818167    3.818167
  Trace= -0.000606
  For jatom=  22 ,with type=   1
  -0.000306 -0.000038  0.000026
  -0.000038  0.000006  0.000038
   0.000026  0.000038 -0.000306
  The components of the vector are:   -3.818167    7.636333    3.818167
  Trace= -0.000606
  For jatom=  24 ,with type=   1
  -0.000306 -0.000038 -0.000026
  -0.000038  0.000006 -0.000038
  -0.000026 -0.000038 -0.000306
  The components of the vector are:    3.818167   -7.636333    3.818167
  Trace= -0.000606
  For jatom=  26 ,with type=   1
  -0.000306  0.000026 -0.000038
   0.000026 -0.000306  0.000038
  -0.000038  0.000038  0.000006
  The components of the vector are:   -3.818167    3.818167    7.636333
  Trace= -0.000606
  For jatom=  33 ,with type=   1
  -0.000306 -0.000026 -0.000038
  -0.000026 -0.000306 -0.000038
  -0.000038 -0.000038  0.000006
  The components of the vector are:    3.818167    3.818167   -7.636333
  Trace= -0.000606
  For jatom=  39 ,with type=   1
   0.000006  0.000038  0.000038
   0.000038 -0.000306 -0.000026
   0.000038 -0.000026 -0.000306
  The components of the vector are:    7.636333    3.818167    3.818167
  Trace= -0.000606
  For jatom=  42 ,with type=   1
  -0.000306  0.000038  0.000026
   0.000038  0.000006 -0.000038
   0.000026 -0.000038 -0.000306
  The components of the vector are:   -3.818167   -7.636333    3.818167
  Trace= -0.000606
  For jatom=  49 ,with type=   1
  -0.000306  0.000026  0.000038
   0.000026 -0.000306 -0.000038
   0.000038 -0.000038  0.000006
  The components of the vector are:    3.818167   -3.818167    7.636333
  Trace= -0.000606
  For jatom=  56 ,with type=   1
  -0.000306  0.000026  0.000038
   0.000026 -0.000306 -0.000038
   0.000038 -0.000038  0.000006
  The components of the vector are:   -3.818167    3.818167   -7.636333
  Trace= -0.000606
  For jatom=  61 ,with type=   1
  -0.000306  0.000038  0.000026
   0.000038  0.000006 -0.000038
   0.000026 -0.000038 -0.000306
  The components of the vector are:    3.818167    7.636333   -3.818167
  Trace= -0.000606
  For jatom=  66 ,with type=   1
   0.000006  0.000038 -0.000038
   0.000038 -0.000306  0.000026
  -0.000038  0.000026 -0.000306
  The components of the vector are:   -7.636333   -3.818167    3.818167
  Trace= -0.000606
  For jatom=  70 ,with type=   1
  -0.000306 -0.000026 -0.000038
  -0.000026 -0.000306 -0.000038
  -0.000038 -0.000038  0.000006
  The components of the vector are:   -3.818167   -3.818167    7.636333
  Trace= -0.000606
  For jatom=  81 ,with type=   1
  -0.000306  0.000026 -0.000038
   0.000026 -0.000306  0.000038
  -0.000038  0.000038  0.000006
  The components of the vector are:    3.818167   -3.818167   -7.636333
  Trace= -0.000606
  For jatom=  83 ,with type=   1
   0.000006 -0.000038  0.000038
  -0.000038 -0.000306  0.000026
   0.000038  0.000026 -0.000306
  The components of the vector are:   -7.636333    3.818167   -3.818167
  Trace= -0.000606
  For jatom=  84 ,with type=   1
  -0.000306 -0.000038 -0.000026
  -0.000038  0.000006 -0.000038
  -0.000026 -0.000038 -0.000306
  The components of the vector are:   -3.818167    7.636333   -3.818167
  Trace= -0.000606
  For jatom=  86 ,with type=   1
  -0.000306 -0.000038  0.000026
  -0.000038  0.000006  0.000038
   0.000026  0.000038 -0.000306
  The components of the vector are:    3.818167   -7.636333   -3.818167
  Trace= -0.000606
  For jatom=  87 ,with type=   1
   0.000006 -0.000038  0.000038
  -0.000038 -0.000306  0.000026
   0.000038  0.000026 -0.000306
  The components of the vector are:    7.636333   -3.818167    3.818167
  Trace= -0.000606
  For jatom=  96 ,with type=   1
  -0.000306 -0.000026  0.000038
  -0.000026 -0.000306  0.000038
   0.000038  0.000038  0.000006
  The components of the vector are:   -3.818167   -3.818167   -7.636333
  Trace= -0.000606
  For jatom=  97 ,with type=   1
   0.000006  0.000038 -0.000038
   0.000038 -0.000306  0.000026
  -0.000038  0.000026 -0.000306
  The components of the vector are:    7.636333    3.818167   -3.818167
  Trace= -0.000606
  For jatom= 100 ,with type=   1
  -0.000306  0.000038 -0.000026
   0.000038  0.000006  0.000038
  -0.000026  0.000038 -0.000306
  The components of the vector are:   -3.818167   -7.636333   -3.818167
  Trace= -0.000606
  For jatom= 107 ,with type=   1
   0.000006  0.000038  0.000038
   0.000038 -0.000306 -0.000026
   0.000038 -0.000026 -0.000306
  The components of the vector are:   -7.636333   -3.818167   -3.818167
  Trace= -0.000606
  For jatom= 108 ,with type=   1
   0.000006 -0.000038 -0.000038
  -0.000038 -0.000306 -0.000026
  -0.000038 -0.000026 -0.000306
  The components of the vector are:    7.636333   -3.818167   -3.818167
  Trace= -0.000606
 ======== NEW SHELL (ishell=   5): There are  12 atoms on this shell at distance=10.799406
  For jatom=  16 ,with type=   1
  -0.000007 -0.000080  0.000000
  -0.000080 -0.000007  0.000000
   0.000000  0.000000  0.000199
  The components of the vector are:   -7.636333    7.636333    0.000000
  Trace=  0.000185
  For jatom=  25 ,with type=   1
  -0.000007  0.000000 -0.000080
   0.000000  0.000199  0.000000
  -0.000080  0.000000 -0.000007
  The components of the vector are:   -7.636333    0.000000    7.636333
  Trace=  0.000185
  For jatom=  27 ,with type=   1
   0.000199  0.000000  0.000000
   0.000000 -0.000007  0.000080
   0.000000  0.000080 -0.000007
  The components of the vector are:    0.000000    7.636333    7.636333
  Trace=  0.000185
  For jatom=  35 ,with type=   1
  -0.000007  0.000080  0.000000
   0.000080 -0.000007  0.000000
   0.000000  0.000000  0.000199
  The components of the vector are:    7.636333    7.636333    0.000000
  Trace=  0.000185
  For jatom=  37 ,with type=   1
  -0.000007  0.000080  0.000000
   0.000080 -0.000007  0.000000
   0.000000  0.000000  0.000199
  The components of the vector are:   -7.636333   -7.636333    0.000000
  Trace=  0.000185
  For jatom=  44 ,with type=   1
  -0.000007  0.000000  0.000080
   0.000000  0.000199  0.000000
   0.000080  0.000000 -0.000007
  The components of the vector are:    7.636333    0.000000    7.636333
  Trace=  0.000185
  For jatom=  48 ,with type=   1
   0.000199  0.000000  0.000000
   0.000000 -0.000007 -0.000080
   0.000000 -0.000080 -0.000007
  The components of the vector are:    0.000000   -7.636333    7.636333
  Trace=  0.000185
  For jatom=  55 ,with type=   1
  -0.000007  0.000000  0.000080
   0.000000  0.000199  0.000000
   0.000080  0.000000 -0.000007
  The components of the vector are:   -7.636333    0.000000   -7.636333
  Trace=  0.000185
  For jatom=  57 ,with type=   1
   0.000199  0.000000  0.000000
   0.000000 -0.000007 -0.000080
   0.000000 -0.000080 -0.000007
  The components of the vector are:    0.000000    7.636333   -7.636333
  Trace=  0.000185
  For jatom=  62 ,with type=   1
  -0.000007 -0.000080  0.000000
  -0.000080 -0.000007  0.000000
   0.000000  0.000000  0.000199
  The components of the vector are:    7.636333   -7.636333    0.000000
  Trace=  0.000185
  For jatom=  76 ,with type=   1
  -0.000007  0.000000 -0.000080
   0.000000  0.000199  0.000000
  -0.000080  0.000000 -0.000007
  The components of the vector are:    7.636333    0.000000   -7.636333
  Trace=  0.000185
  For jatom=  80 ,with type=   1
   0.000199  0.000000  0.000000
   0.000000 -0.000007  0.000080
   0.000000  0.000080 -0.000007
  The components of the vector are:    0.000000   -7.636333   -7.636333
  Trace=  0.000185
 #############################################################################
 ############## Compute the phonon spectrum, the DOS, ########################
 ##############  the dynamical matrix and write them  ########################
 #############################################################################
 #############################################################################
 ################### vibrational Density OF States (vDOS) ####################
 #############################################################################
 See the vdos.dat and TDEP_PHDOS* files
 Write the IFC of TDEP in ifc_out.dat (and ifc_out.nc)
 ------- achieved
 Compute the vDOS
 ------- achieved
 (Please, pay attention to convergency wrt the BZ mesh : the ngqpt2 input variable)
 See the dij.dat, omega.dat and eigenvectors files
 See also the DDB file
 #############################################################################
 ######################### Elastic constants #################################
 ################ Bulk and Shear modulus--Sound velocities ###################
 #############################################################################
 ========== Using the formulation proposed by Wallace (using the IFC) =========
 Cijkl [in GPa]=
 | C11 C12 C13 C14 C15 C16 |    113.760   61.649   61.649    0.000    0.000    0.000
 | C21 C22 C23 C24 C25 C26 |     61.649  113.760   61.649    0.000    0.000    0.000
 | C31 C32 C33 C34 C35 C36 |     61.649   61.649  113.760    0.000    0.000    0.000
 | C41 C42 C43 C44 C45 C46 | =    0.000    0.000    0.000   38.243    0.000    0.000
 | C51 C52 C53 C54 C55 C56 |      0.000    0.000    0.000    0.000   38.243    0.000
 | C61 C62 C63 C64 C65 C66 |      0.000    0.000    0.000    0.000    0.000   38.243
 ========== For an Anisotropic Material =======================================
 Sijkl [in GPa-1]=
 | S11 S12 S13 S14 S15 S16 |      0.014   -0.005   -0.005    0.000    0.000   -0.000
 | S21 S22 S23 S24 S25 S26 |     -0.005    0.014   -0.005    0.000    0.000   -0.000
 | S31 S32 S33 S34 S35 S36 |     -0.005   -0.005    0.014    0.000    0.000   -0.000
 | S41 S42 S43 S44 S45 S46 | =    0.000    0.000    0.000    0.026    0.000   -0.000
 | S51 S52 S53 S54 S55 S56 |      0.000    0.000    0.000    0.000    0.026   -0.000
 | S61 S62 S63 S64 S65 S66 |      0.000    0.000    0.000    0.000    0.000    0.026
 ========== For an Orthotropic Material (see B. M. Lempriere (1968)) ==========
 Young modulus E1, E2 and E3 [in GPa]=  70.427   70.427   70.427
 Poisson ratio Nu21, Nu31, Nu23, Nu12, Nu13 and Nu32=   0.351    0.351    0.351    0.351    0.351    0.351
 Shear modulus G23, G13 and G12 [in GPa]=  38.243   38.243   38.243
 Sijkl [in GPa-1]=
 | S11 S12 S13 S14 S15 S16 |      0.014   -0.005   -0.005    0.000    0.000    0.000
 | S21 S22 S23 S24 S25 S26 |     -0.005    0.014   -0.005    0.000    0.000    0.000
 | S31 S32 S33 S34 S35 S36 |     -0.005   -0.005    0.014    0.000    0.000    0.000
 | S41 S42 S43 S44 S45 S46 | =    0.000    0.000    0.000    0.026    0.000    0.000
 | S51 S52 S53 S54 S55 S56 |      0.000    0.000    0.000    0.000    0.026    0.000
 | S61 S62 S63 S64 S65 S66 |      0.000    0.000    0.000    0.000    0.000    0.026
 For density rho [in kg.m-3]= 2715.988
 ========================= Voigt average (constant strain) ===================
 ISOTHERMAL modulus [in GPa]: Bulk Kt=   79.019 and Shear G=   33.368
 Average of Young modulus E [in GPa]=   87.752 Lame modulus Lambda [in GPa]=   56.774 and Poisson ratio Nu=    0.315
 Velocities [in m.s-1]: compressional Vp= 6743.529  shear Vs= 3505.115  and bulk Vphi= 5393.893
 Debye velocity [in m.s-1]= 3922.618  and temperature [in K]=  458.761
 ========================= Reuss average (constant stress) ===================
 ISOTHERMAL modulus [in GPa]: Bulk Kt=   79.019 and Shear G=   32.216
 Average of Young modulus E [in GPa]=   85.084 Lame modulus Lambda [in GPa]=   57.542 and Poisson ratio Nu=    0.321
 Velocities [in m.s-1]: compressional Vp= 6701.449  shear Vs= 3444.053  and bulk Vphi= 5393.893
 Debye velocity [in m.s-1]= 3857.101  and temperature [in K]=  451.098
 ============================== Hill average =================================
 ISOTHERMAL modulus [in GPa]: Bulk Kt=   79.019 and Shear G=   32.792
 Average of Young modulus E [in GPa]=   86.421 Lame modulus Lambda [in GPa]=   57.158 and Poisson ratio Nu=    0.318
 Velocities [in m.s-1]: compressional Vp= 6722.522  shear Vs= 3474.718  and bulk Vphi= 5393.893
 Debye velocity [in m.s-1]= 3890.016  and temperature [in K]=  454.948
 ========================= Elastic anisotropy =================================
 Elastic anisotropy index : A_U= 5*G_V/G_R + K_V/K_R - 6 =    0.179
 Bulk anisotropy ratio : A_B= (B_V-B_R)/(B_V+B_R) =    0.000
 Shear anisotropy ratio : A_G= (G_V-G_R)/(G_V+G_R) =    0.018
 #############################################################################
 ######################### Energies, errors,...  #############################
 #############################################################################
 Thermodynamic quantities and convergence parameters of THE MODEL,
      as a function of the step number (energies in eV/atom and forces in Ha/bohr) :
 <U_TDEP> = U_0 + U_1 + U_2
       with U_0 = < U_MD - sum_i Phi1 ui - 1/2 sum_ij Phi2 ui uj >
        and U_1 = <      sum_i    Phi1 ui >
        and U_2 = < 1/2  sum_ij   Phi2 ui uj >
  Delta_U =   < U_MD - U_TDEP > 
  Delta_U2= (< (U_MD - U_TDEP)^2 >)**0.5 
  Delta_F2= (< (F_MD - F_TDEP)^2 >)**0.5 
  Sigma   = (< (F_MD - F_TDEP)^2 >/<F_MD**2>)**0.5 
     <U_MD>            U_0              U_1              U_2            Delta_U          Delta_U2          Delta_F2          Sigma
   -56.30133        -56.40725          0.00000          0.10592         -0.00000          0.38259          0.00631          0.50615
 NOTE : in the harmonic and classical limit (T>>T_Debye), U_2=3/2*kB*T=      0.11633
 See the etotMDvsTDEP.dat & fcartMDvsTDEP.dat files
 #############################################################################
 ################# Thermodynamic quantities: Free energy,...##################
 #############################################################################
 See the thermo.dat file
 #############################################################################
 ######################### CALCULATION COMPLETED #############################
 #############################################################################
 Suggested references for the acknowledgment of ABINIT usage.
 The users of ABINIT have little formal obligations with respect to the ABINIT group
 (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
 However, it is common practice in the scientific literature,
 to acknowledge the efforts of people that have made the research possible.
 In this spirit, please find below suggested citations of work written by ABINIT developers,
 corresponding to implementations inside of ABINIT that you have used in the present run.
 Note also that it will be of great value to readers of publications presenting these results,
 to read papers enabling them to understand the theoretical formalism and details
 of the ABINIT implementation.
 For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
 [1] a-TDEP: Temperature Dependent Effective Potential for Abinit 
 -- Lattice dynamic properties including anharmonicity
 F. Bottin, J. Bieder and J. Bouchet, Comput. Phys. Comm. 254, 107301 (2020).
 Strong suggestion to cite this paper in your publications.
 [2] Thermal evolution of vibrational properties of alpha-U
 J. Bouchet and F. Bottin, Phys. Rev. B 92, 174108 (2015).
 Strong suggestion to cite this paper in your publications.
 [3] Lattice dynamics of anharmonic solids from first principles
 O. Hellman, I.A. Abrikosov and S.I. Simak, Phys. Rev. B 84, 180301(R) (2011).
 [4] Temperature dependent effective potential method for accurate free energy calculations of solids
 O. Hellman, P. Steneteg, I.A. Abrikosov and S.I. Simak, Phys. Rev. B 87, 104111 (2013).
This file reproduces all the steps encountered during the execution of atdep. You are strongly adviced to detect all the sequences listed below. The main output file :
- begins with the common header of the ABINIT output files
 
  .Version    3.0 of PHONONS
  .Copyright (C) 1998-2022 ABINIT group (FB,JB).
   ABINIT comes with ABSOLUTELY NO WARRANTY.
   It is free software, and you are welcome to redistribute it
   under certain conditions (GNU General Public License,
   see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
...
- echoes all the input variables included in the input file
 
   #############################################################################
   ######################### ECHO OF INPUT FILE ################################
   #############################################################################
   ======================= Define the unitcell =================================
   brav                    7   -3
   natom_unitcell          1
...
- computes useful quantities using the available data (the acell of the unitcell,…)
 
   #############################################################################
   ########################## Computed quantities ##############################
   #############################################################################
   acell_unitcell=     7.6363332667     7.6363332667     7.6363332667
...
- generates the q-point meshes
 
   #############################################################################
   ########################## Q points generation  #############################
   #############################################################################
   Generate the BZ path using the Q points defined by default
   See the qpt.dat file
- establishes a correspondence between the atoms in the unitcell, the multiplicity, the symmetries and the atoms in the supercell
 
   #############################################################################
   ###### Find the matching between ideal and average positions  ###############
   #############################################################################
    Determine ideal positions and distances...
    Compute average positions...
    Search the unitcell basis of atoms in the MD trajectory...
    Compare ideal and average positions using PBC...
    Write the xred_average.xyz file with ideal and average positions...
    Compute cartesian coordinates and forces...
- finds the symmetry operations between atoms and pairs of atoms.
 
   #############################################################################
   ###################### Find the symetry operations ##########################
   #################### (connecting the atoms together) ########################
   #############################################################################
   Search the matrix transformation going from (k) to (i)...
   Search the matrix transformation going from (k,l) to (i,j)...
   See the Indsym*.dat files (if debug)
- computes the number of non-zero independent IFC coefficients at the 1st and 2nd order, for each shell of coordination.
 
   #############################################################################
   ####### FIRST ORDER : find the number of coefficients #######################
   #############################################################################
    Build the ref1at and Isym1at tables...
    Build the Shell1at datatype...
    Number of shells=           1
...
   #############################################################################
   ###### SECOND ORDER : find the number of coefficients #######################
   #############################################################################
    Build the ref2at and Isym2at tables...
    Build the Shell2at datatype...
    Number of shells=           5
...
- computes the constraints (for the IFC), builds the pseudo-inverse and solves the problem
 
   #############################################################################
   ###################### Compute the constraints ##############################
   ########################## At the 1st order #################################
   ########################## At the 2nd order #################################
...
- lists all the IFC coefficients for each shell, at the 1st and 2nd order
 
   #############################################################################
   #### For each shell, list of coefficients (IFC), number of neighbours... ####
   #############################################################################
   ############# List of (first order) IFC for the reference atom=   1
     0.000000  0.000000  0.000000
   #############################################################################
   #### For each shell, list of coefficients (IFC), number of neighbours... ####
   #############################################################################
   ############# List of (second order) IFC for the reference atom=   1
   ======== NEW SHELL (ishell=   1): There are   1 atoms on this shell at distance= 0.000000
    For jatom=   1 ,with type=   1
     0.044568  0.000000  0.000000
     0.000000  0.044568  0.000000
     0.000000  0.000000  0.044568
...
- writes the dynamical matrix, the phonon spectrum and the vibrational density of states (vDOS) in specific files
 
   #############################################################################
   ############## Compute the phonon spectrum, the DOS, ########################
   ##############  the dynamical matrix and write them  ########################
   #############################################################################
   #############################################################################
   ################### vibrational Density OF States (vDOS) ####################
...
- echoes the elastic constants and some elastic moduli
 
   #############################################################################
   ######################### Elastic constants #################################
   ################ Bulk and Shear modulus--Sound velocities ###################
   #############################################################################
   ========== Using the formulation proposed by Wallace (using the IFC) =========
   Cijkl [in GPa]=
   | C11 C12 C13 C14 C15 C16 |    113.760   61.649   61.649    0.000    0.000    0.000
   | C21 C22 C23 C24 C25 C26 |     61.649  113.760   61.649    0.000    0.000    0.000
   | C31 C32 C33 C34 C35 C36 |     61.649   61.649  113.760    0.000    0.000    0.000
...
- computes the energy of the model (TDEP) and some convergence parameters
 
   #############################################################################
   ######################### Energies, errors,...  #############################
   #############################################################################
   Thermodynamic quantities and convergence parameters of THE MODEL,
        as a function of the step number (energies in eV/atom and forces in Ha/bohr) :
   <U_TDEP> = U_0 + U_1 + U_2
         with U_0 = < U_MD - sum_i Phi1 ui - 1/2 sum_ij Phi2 ui uj >
          and U_1 = <      sum_i    Phi1 ui >
          and U_2 = < 1/2  sum_ij   Phi2 ui uj >
...
- writes thermodynamic data of the system in a file (see below)
 
   #############################################################################
   ################# Thermodynamic quantities: Free energy,...##################
   #############################################################################
   See the thermo.dat file
- finishes with the standard aknowlegment section of ABINIT output files
 
   #############################################################################
   ######################### CALCULATION COMPLETED #############################
   #############################################################################
   Suggested references for the acknowledgment of ABINIT usage.
   The users of ABINIT have little formal obligations with respect to the ABINIT group
   (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
   However, it is common practice in the scientific literature,
   to acknowledge the efforts of people that have made the research possible.
...
2.2.2 The phonon frequencies file tatdep1_1omega.dat¶
# Phonon frequencies in THz
    1           0.000           0.000           0.000
    2           0.093           0.093           0.160
    3           0.186           0.186           0.320
    4           0.278           0.278           0.480
    5           0.371           0.371           0.640
    6           0.464           0.464           0.800
    7           0.556           0.556           0.959
    8           0.649           0.649           1.118
    9           0.741           0.741           1.277
   10           0.833           0.833           1.436
   11           0.925           0.925           1.593
   12           1.017           1.017           1.751
   13           1.109           1.109           1.908
   14           1.200           1.200           2.064
   15           1.291           1.291           2.220
   16           1.382           1.382           2.375
   17           1.472           1.472           2.529
   18           1.562           1.562           2.683
   19           1.652           1.652           2.836
   20           1.742           1.742           2.988
   21           1.831           1.831           3.139
   22           1.920           1.920           3.289
   23           2.008           2.008           3.438
   24           2.096           2.096           3.586
   25           2.183           2.183           3.733
   26           2.270           2.270           3.879
   27           2.356           2.356           4.024
   28           2.442           2.442           4.168
   29           2.528           2.528           4.310
   30           2.612           2.612           4.451
   31           2.697           2.697           4.591
   32           2.780           2.780           4.730
   33           2.863           2.863           4.867
   34           2.946           2.946           5.003
   35           3.027           3.027           5.137
   36           3.108           3.108           5.270
   37           3.189           3.189           5.401
   38           3.268           3.268           5.531
   39           3.347           3.347           5.659
   40           3.425           3.425           5.786
   41           3.502           3.502           5.911
   42           3.579           3.579           6.034
   43           3.655           3.655           6.156
   44           3.729           3.729           6.276
   45           3.803           3.803           6.394
   46           3.877           3.877           6.511
   47           3.949           3.949           6.626
   48           4.020           4.020           6.739
   49           4.090           4.090           6.850
   50           4.160           4.160           6.959
   51           4.228           4.228           7.066
   52           4.296           4.296           7.172
   53           4.362           4.362           7.275
   54           4.427           4.427           7.377
   55           4.492           4.492           7.477
   56           4.555           4.555           7.575
   57           4.617           4.617           7.670
   58           4.678           4.678           7.764
   59           4.738           4.738           7.856
   60           4.797           4.797           7.946
   61           4.854           4.854           8.033
   62           4.911           4.911           8.119
   63           4.966           4.966           8.203
   64           5.020           5.020           8.284
   65           5.073           5.073           8.364
   66           5.125           5.125           8.441
   67           5.175           5.175           8.516
   68           5.224           5.224           8.589
   69           5.272           5.272           8.661
   70           5.318           5.318           8.729
   71           5.363           5.363           8.796
   72           5.407           5.407           8.861
   73           5.449           5.449           8.923
   74           5.490           5.490           8.984
   75           5.530           5.530           9.042
   76           5.568           5.568           9.098
   77           5.605           5.605           9.152
   78           5.641           5.641           9.203
   79           5.675           5.675           9.253
   80           5.707           5.707           9.300
   81           5.739           5.739           9.345
   82           5.768           5.768           9.388
   83           5.797           5.797           9.429
   84           5.823           5.823           9.468
   85           5.849           5.849           9.504
   86           5.873           5.873           9.538
   87           5.895           5.895           9.570
   88           5.916           5.916           9.600
   89           5.935           5.935           9.627
   90           5.953           5.953           9.653
   91           5.969           5.969           9.676
   92           5.984           5.984           9.697
   93           5.997           5.997           9.716
   94           6.009           6.009           9.732
   95           6.019           6.019           9.747
   96           6.027           6.027           9.759
   97           6.034           6.034           9.769
   98           6.040           6.040           9.776
   99           6.044           6.044           9.782
  100           6.046           6.046           9.785
  101           6.047           6.047           9.786
  102           6.047           6.047           9.785
  103           6.047           6.049           9.782
  104           6.048           6.051           9.776
  105           6.050           6.054           9.767
  106           6.051           6.059           9.756
  107           6.053           6.064           9.743
  108           6.056           6.070           9.728
  109           6.058           6.077           9.710
  110           6.061           6.086           9.690
  111           6.064           6.095           9.668
  112           6.068           6.105           9.643
  113           6.072           6.117           9.616
  114           6.076           6.130           9.587
  115           6.080           6.144           9.556
  116           6.085           6.159           9.523
  117           6.089           6.175           9.488
  118           6.094           6.192           9.450
  119           6.099           6.211           9.411
  120           6.105           6.231           9.370
  121           6.110           6.253           9.327
  122           6.116           6.276           9.283
  123           6.121           6.300           9.236
  124           6.127           6.325           9.188
  125           6.132           6.353           9.139
  126           6.138           6.381           9.088
  127           6.144           6.411           9.035
  128           6.150           6.443           8.981
  129           6.155           6.476           8.926
  130           6.161           6.510           8.870
  131           6.166           6.546           8.812
  132           6.171           6.584           8.754
  133           6.177           6.623           8.694
  134           6.182           6.664           8.634
  135           6.187           6.706           8.573
  136           6.191           6.750           8.511
  137           6.196           6.795           8.449
  138           6.200           6.841           8.386
  139           6.204           6.889           8.322
  140           6.208           6.939           8.258
  141           6.211           6.989           8.194
  142           6.214           7.041           8.130
  143           6.217           7.095           8.066
  144           6.220           7.149           8.002
  145           6.222           7.205           7.937
  146           6.224           7.261           7.873
  147           6.225           7.319           7.810
  148           6.227           7.378           7.746
  149           6.228           7.437           7.683
  150           6.228           7.498           7.621
  151           6.228           7.559           7.559
  152           6.228           7.498           7.621
  153           6.228           7.437           7.683
  154           6.227           7.378           7.746
  155           6.225           7.319           7.810
  156           6.224           7.261           7.873
  157           6.222           7.205           7.937
  158           6.220           7.149           8.002
  159           6.217           7.095           8.066
  160           6.214           7.041           8.130
  161           6.211           6.989           8.194
  162           6.208           6.939           8.258
  163           6.204           6.889           8.322
  164           6.200           6.841           8.386
  165           6.196           6.795           8.449
  166           6.191           6.750           8.511
  167           6.187           6.706           8.573
  168           6.182           6.664           8.634
  169           6.177           6.623           8.694
  170           6.171           6.584           8.754
  171           6.166           6.546           8.812
  172           6.161           6.510           8.870
  173           6.155           6.476           8.926
  174           6.150           6.443           8.981
  175           6.144           6.411           9.035
  176           6.138           6.381           9.088
  177           6.132           6.353           9.139
  178           6.127           6.325           9.188
  179           6.121           6.300           9.236
  180           6.116           6.276           9.283
  181           6.110           6.253           9.327
  182           6.105           6.231           9.370
  183           6.099           6.211           9.411
  184           6.094           6.192           9.450
  185           6.089           6.175           9.488
  186           6.085           6.159           9.523
  187           6.080           6.144           9.556
  188           6.076           6.130           9.587
  189           6.072           6.117           9.616
  190           6.068           6.105           9.643
  191           6.064           6.095           9.668
  192           6.061           6.086           9.690
  193           6.058           6.077           9.710
  194           6.056           6.070           9.728
  195           6.053           6.064           9.743
  196           6.051           6.059           9.756
  197           6.050           6.054           9.767
  198           6.048           6.051           9.776
  199           6.047           6.049           9.782
  200           6.047           6.047           9.785
  201           6.047           6.047           9.786
  202           6.046           6.048           9.785
  203           6.044           6.052           9.782
  204           6.040           6.059           9.775
  205           6.035           6.069           9.767
  206           6.029           6.081           9.756
  207           6.021           6.096           9.742
  208           6.012           6.113           9.727
  209           6.002           6.133           9.709
  210           5.990           6.155           9.688
  211           5.977           6.180           9.665
  212           5.962           6.207           9.640
  213           5.946           6.237           9.613
  214           5.929           6.268           9.583
  215           5.911           6.302           9.551
  216           5.891           6.337           9.518
  217           5.870           6.375           9.482
  218           5.848           6.414           9.444
  219           5.824           6.454           9.404
  220           5.800           6.497           9.362
  221           5.774           6.540           9.318
  222           5.747           6.585           9.272
  223           5.719           6.631           9.225
  224           5.690           6.678           9.176
  225           5.660           6.726           9.125
  226           5.628           6.775           9.073
  227           5.596           6.824           9.019
  228           5.563           6.874           8.964
  229           5.529           6.924           8.907
  230           5.494           6.975           8.849
  231           5.459           7.026           8.790
  232           5.422           7.077           8.729
  233           5.385           7.128           8.668
  234           5.347           7.178           8.605
  235           5.309           7.229           8.541
  236           5.269           7.279           8.477
  237           5.230           7.328           8.412
  238           5.190           7.376           8.346
  239           5.150           7.424           8.279
  240           5.109           7.470           8.212
  241           5.067           7.516           8.144
  242           5.026           7.561           8.076
  243           4.984           7.605           8.007
  244           4.942           7.647           7.937
  245           4.899           7.688           7.868
  246           4.856           7.728           7.797
  247           4.814           7.727           7.766
  248           4.771           7.656           7.803
  249           4.728           7.584           7.838
  250           4.685           7.513           7.871
  251           4.642           7.441           7.902
  252           4.599           7.369           7.932
  253           4.556           7.297           7.959
  254           4.513           7.225           7.985
  255           4.470           7.153           8.008
  256           4.428           7.081           8.029
  257           4.386           7.008           8.048
  258           4.344           6.936           8.064
  259           4.302           6.864           8.079
  260           4.260           6.791           8.090
  261           4.219           6.718           8.099
  262           4.178           6.646           8.106
  263           4.137           6.573           8.110
  264           4.097           6.501           8.111
  265           4.057           6.428           8.110
  266           4.017           6.355           8.106
  267           3.978           6.282           8.099
  268           3.939           6.210           8.089
  269           3.900           6.137           8.076
  270           3.862           6.064           8.061
  271           3.824           5.991           8.042
  272           3.786           5.918           8.021
  273           3.748           5.844           7.996
  274           3.711           5.771           7.969
  275           3.674           5.697           7.939
  276           3.637           5.624           7.905
  277           3.600           5.550           7.869
  278           3.563           5.476           7.829
  279           3.527           5.401           7.786
  280           3.490           5.327           7.741
  281           3.454           5.252           7.692
  282           3.417           5.177           7.640
  283           3.380           5.101           7.585
  284           3.344           5.025           7.527
  285           3.307           4.949           7.465
  286           3.269           4.873           7.401
  287           3.232           4.796           7.334
  288           3.194           4.719           7.263
  289           3.156           4.641           7.190
  290           3.118           4.563           7.113
  291           3.079           4.485           7.034
  292           3.039           4.406           6.951
  293           2.999           4.327           6.866
  294           2.959           4.247           6.778
  295           2.917           4.167           6.686
  296           2.875           4.086           6.592
  297           2.833           4.005           6.495
  298           2.790           3.924           6.395
  299           2.745           3.842           6.293
  300           2.700           3.759           6.187
  301           2.655           3.676           6.079
  302           2.608           3.593           5.969
  303           2.560           3.509           5.855
  304           2.512           3.425           5.739
  305           2.462           3.340           5.621
  306           2.412           3.255           5.500
  307           2.361           3.170           5.377
  308           2.308           3.084           5.251
  309           2.255           2.998           5.123
  310           2.200           2.911           4.992
  311           2.145           2.824           4.860
  312           2.088           2.736           4.725
  313           2.031           2.649           4.588
  314           1.972           2.560           4.450
  315           1.912           2.472           4.309
  316           1.852           2.383           4.166
  317           1.790           2.294           4.021
  318           1.727           2.204           3.875
  319           1.663           2.115           3.727
  320           1.599           2.025           3.577
  321           1.533           1.934           3.425
  322           1.467           1.844           3.272
  323           1.399           1.753           3.118
  324           1.331           1.662           2.962
  325           1.262           1.571           2.805
  326           1.192           1.479           2.647
  327           1.121           1.388           2.487
  328           1.050           1.296           2.326
  329           0.978           1.204           2.164
  330           0.905           1.112           2.002
  331           0.832           1.020           1.838
  332           0.758           0.927           1.674
  333           0.684           0.835           1.508
  334           0.609           0.742           1.343
  335           0.534           0.650           1.176
  336           0.458           0.557           1.009
  337           0.382           0.464           0.842
  338           0.306           0.372           0.674
  339           0.230           0.279           0.506
  340           0.153           0.186           0.337
  341           0.077           0.093           0.169
  342           0.000           0.000           0.000
  343           0.083           0.083           0.172
  344           0.166           0.166           0.345
  345           0.249           0.249           0.517
  346           0.331           0.331           0.689
  347           0.414           0.414           0.861
  348           0.496           0.496           1.032
  349           0.578           0.578           1.203
  350           0.659           0.659           1.374
  351           0.740           0.740           1.544
  352           0.820           0.820           1.714
  353           0.900           0.900           1.883
  354           0.979           0.979           2.051
  355           1.058           1.058           2.219
  356           1.135           1.135           2.386
  357           1.212           1.212           2.552
  358           1.288           1.288           2.717
  359           1.364           1.364           2.881
  360           1.438           1.438           3.044
  361           1.511           1.511           3.206
  362           1.584           1.584           3.367
  363           1.655           1.655           3.526
  364           1.725           1.725           3.685
  365           1.794           1.794           3.842
  366           1.862           1.862           3.998
  367           1.929           1.929           4.152
  368           1.994           1.994           4.305
  369           2.058           2.058           4.456
  370           2.121           2.121           4.606
  371           2.183           2.183           4.754
  372           2.243           2.243           4.901
  373           2.302           2.302           5.045
  374           2.359           2.359           5.188
  375           2.415           2.415           5.330
  376           2.470           2.470           5.469
  377           2.523           2.523           5.606
  378           2.574           2.574           5.742
  379           2.625           2.625           5.875
  380           2.673           2.673           6.007
  381           2.721           2.721           6.136
  382           2.767           2.767           6.264
  383           2.811           2.811           6.389
  384           2.854           2.854           6.512
  385           2.895           2.895           6.632
  386           2.935           2.935           6.751
  387           2.973           2.973           6.867
  388           3.010           3.010           6.981
  389           3.046           3.046           7.092
  390           3.080           3.080           7.201
  391           3.113           3.113           7.308
  392           3.144           3.144           7.412
  393           3.174           3.174           7.513
  394           3.203           3.203           7.612
  395           3.230           3.230           7.709
  396           3.256           3.256           7.803
  397           3.281           3.281           7.894
  398           3.305           3.305           7.983
  399           3.327           3.327           8.069
  400           3.348           3.348           8.152
  401           3.368           3.368           8.233
  402           3.387           3.387           8.310
  403           3.405           3.405           8.386
  404           3.422           3.422           8.458
  405           3.437           3.437           8.527
  406           3.452           3.452           8.594
  407           3.466           3.466           8.658
  408           3.479           3.479           8.719
  409           3.491           3.491           8.777
  410           3.502           3.502           8.832
  411           3.512           3.512           8.884
  412           3.522           3.522           8.934
  413           3.531           3.531           8.980
  414           3.539           3.539           9.024
  415           3.546           3.546           9.064
  416           3.553           3.553           9.102
  417           3.559           3.559           9.136
  418           3.565           3.565           9.168
  419           3.569           3.569           9.197
  420           3.574           3.574           9.222
  421           3.577           3.577           9.245
  422           3.581           3.581           9.265
  423           3.583           3.583           9.281
  424           3.585           3.585           9.295
  425           3.587           3.587           9.306
  426           3.588           3.588           9.313
  427           3.589           3.589           9.318
  428           3.589           3.589           9.319
You can plot the phonon spectrum. If you use the xmgrace tool, launch:
  xmgrace -nxy tatdep1_1omega.dat
You should get this picture :

On the Y-axis, you have the frequencies (in THz, see the input file). On the X-axis, you have the q-points along a path in the Brillouin Zone (BZ). This one is defined by default and depends on the Bravais lattice.
Note
The path along the BZ can be changed using the bzpath input variable.
The BZ boundaries and all the q-points included in the path are available in the tatdep1_1qpt.dat file :
Generate the BZ path using the Q points defined by default In reduced coordinates: G 0.00000 0.00000 0.00000 X 0.50000 0.00000 0.50000 W 0.50000 0.25000 0.75000 Xp 0.50000 0.50000 1.00000 K 0.37500 0.37500 0.75000 G 0.00000 0.00000 0.00000 L 0.50000 0.50000 0.50000 In cartesian coordinates: G 0.00000 0.00000 0.00000 X 0.00000 0.13095 0.00000 W 0.06548 0.13095 0.00000 Xp 0.13095 0.13095 0.00000 K 0.09821 0.09821 0.00000 G 0.00000 0.00000 0.00000 L 0.06548 0.06548 0.06548 Using gprimt= -1.00000 1.00000 1.00000 1.00000 -1.00000 1.00000 1.00000 1.00000 -1.00000 The number of points along each direction in the BZ= G -X 100 X -W 50 W -Xp 50 Xp-K 35 K -G 106 G -L 86 Q-points path (in reduced coordinates) and (in cartesian coordinates)= 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 2 0.00500 0.00000 0.00500 0.00000 0.00131 0.00000 3 0.01000 0.00000 0.01000 0.00000 0.00262 0.00000 4 0.01500 0.00000 0.01500 0.00000 0.00393 0.00000 5 0.02000 0.00000 0.02000 0.00000 0.00524 0.00000 6 0.02500 0.00000 0.02500 0.00000 0.00655 0.00000 7 0.03000 0.00000 0.03000 0.00000 0.00786 0.00000 8 0.03500 0.00000 0.03500 0.00000 0.00917 0.00000 9 0.04000 0.00000 0.04000 0.00000 0.01048 0.00000 10 0.04500 0.00000 0.04500 0.00000 0.01179 0.00000 11 0.05000 0.00000 0.05000 0.00000 0.01310 0.00000 12 0.05500 0.00000 0.05500 0.00000 0.01440 0.00000 13 0.06000 0.00000 0.06000 0.00000 0.01571 0.00000 14 0.06500 0.00000 0.06500 0.00000 0.01702 0.00000 15 0.07000 0.00000 0.07000 0.00000 0.01833 0.00000 16 0.07500 0.00000 0.07500 0.00000 0.01964 0.00000 17 0.08000 0.00000 0.08000 0.00000 0.02095 0.00000 18 0.08500 0.00000 0.08500 0.00000 0.02226 0.00000 19 0.09000 0.00000 0.09000 0.00000 0.02357 0.00000 20 0.09500 0.00000 0.09500 0.00000 0.02488 0.00000 21 0.10000 0.00000 0.10000 0.00000 0.02619 0.00000 22 0.10500 0.00000 0.10500 0.00000 0.02750 0.00000 23 0.11000 0.00000 0.11000 0.00000 0.02881 0.00000 24 0.11500 0.00000 0.11500 0.00000 0.03012 0.00000 25 0.12000 0.00000 0.12000 0.00000 0.03143 0.00000 26 0.12500 0.00000 0.12500 0.00000 0.03274 0.00000 27 0.13000 0.00000 0.13000 0.00000 0.03405 0.00000 28 0.13500 0.00000 0.13500 0.00000 0.03536 0.00000 29 0.14000 0.00000 0.14000 0.00000 0.03667 0.00000 30 0.14500 0.00000 0.14500 0.00000 0.03798 0.00000 31 0.15000 0.00000 0.15000 0.00000 0.03929 0.00000 32 0.15500 0.00000 0.15500 0.00000 0.04060 0.00000 33 0.16000 0.00000 0.16000 0.00000 0.04190 0.00000 34 0.16500 0.00000 0.16500 0.00000 0.04321 0.00000 35 0.17000 0.00000 0.17000 0.00000 0.04452 0.00000 36 0.17500 0.00000 0.17500 0.00000 0.04583 0.00000 37 0.18000 0.00000 0.18000 0.00000 0.04714 0.00000 38 0.18500 0.00000 0.18500 0.00000 0.04845 0.00000 39 0.19000 0.00000 0.19000 0.00000 0.04976 0.00000 40 0.19500 0.00000 0.19500 0.00000 0.05107 0.00000 41 0.20000 0.00000 0.20000 0.00000 0.05238 0.00000 42 0.20500 0.00000 0.20500 0.00000 0.05369 0.00000 43 0.21000 0.00000 0.21000 0.00000 0.05500 0.00000 44 0.21500 0.00000 0.21500 0.00000 0.05631 0.00000 45 0.22000 0.00000 0.22000 0.00000 0.05762 0.00000 46 0.22500 0.00000 0.22500 0.00000 0.05893 0.00000 47 0.23000 0.00000 0.23000 0.00000 0.06024 0.00000 48 0.23500 0.00000 0.23500 0.00000 0.06155 0.00000 49 0.24000 0.00000 0.24000 0.00000 0.06286 0.00000 50 0.24500 0.00000 0.24500 0.00000 0.06417 0.00000 51 0.25000 0.00000 0.25000 0.00000 0.06548 0.00000 52 0.25500 0.00000 0.25500 0.00000 0.06679 0.00000 53 0.26000 0.00000 0.26000 0.00000 0.06810 0.00000 54 0.26500 0.00000 0.26500 0.00000 0.06941 0.00000 55 0.27000 0.00000 0.27000 0.00000 0.07071 0.00000 56 0.27500 0.00000 0.27500 0.00000 0.07202 0.00000 57 0.28000 0.00000 0.28000 0.00000 0.07333 0.00000 58 0.28500 0.00000 0.28500 0.00000 0.07464 0.00000 59 0.29000 0.00000 0.29000 0.00000 0.07595 0.00000 60 0.29500 0.00000 0.29500 0.00000 0.07726 0.00000 61 0.30000 0.00000 0.30000 0.00000 0.07857 0.00000 62 0.30500 0.00000 0.30500 0.00000 0.07988 0.00000 63 0.31000 0.00000 0.31000 0.00000 0.08119 0.00000 64 0.31500 0.00000 0.31500 0.00000 0.08250 0.00000 65 0.32000 0.00000 0.32000 0.00000 0.08381 0.00000 66 0.32500 0.00000 0.32500 0.00000 0.08512 0.00000 67 0.33000 0.00000 0.33000 0.00000 0.08643 0.00000 68 0.33500 0.00000 0.33500 0.00000 0.08774 0.00000 69 0.34000 0.00000 0.34000 0.00000 0.08905 0.00000 70 0.34500 0.00000 0.34500 0.00000 0.09036 0.00000 71 0.35000 0.00000 0.35000 0.00000 0.09167 0.00000 72 0.35500 0.00000 0.35500 0.00000 0.09298 0.00000 73 0.36000 0.00000 0.36000 0.00000 0.09429 0.00000 74 0.36500 0.00000 0.36500 0.00000 0.09560 0.00000 75 0.37000 0.00000 0.37000 0.00000 0.09691 0.00000 76 0.37500 0.00000 0.37500 0.00000 0.09821 0.00000 77 0.38000 0.00000 0.38000 0.00000 0.09952 0.00000 78 0.38500 0.00000 0.38500 0.00000 0.10083 0.00000 79 0.39000 0.00000 0.39000 0.00000 0.10214 0.00000 80 0.39500 0.00000 0.39500 0.00000 0.10345 0.00000 81 0.40000 0.00000 0.40000 0.00000 0.10476 0.00000 82 0.40500 0.00000 0.40500 0.00000 0.10607 0.00000 83 0.41000 0.00000 0.41000 0.00000 0.10738 0.00000 84 0.41500 0.00000 0.41500 0.00000 0.10869 0.00000 85 0.42000 0.00000 0.42000 0.00000 0.11000 0.00000 86 0.42500 0.00000 0.42500 0.00000 0.11131 0.00000 87 0.43000 0.00000 0.43000 0.00000 0.11262 0.00000 88 0.43500 0.00000 0.43500 0.00000 0.11393 0.00000 89 0.44000 0.00000 0.44000 0.00000 0.11524 0.00000 90 0.44500 0.00000 0.44500 0.00000 0.11655 0.00000 91 0.45000 0.00000 0.45000 0.00000 0.11786 0.00000 92 0.45500 0.00000 0.45500 0.00000 0.11917 0.00000 93 0.46000 0.00000 0.46000 0.00000 0.12048 0.00000 94 0.46500 0.00000 0.46500 0.00000 0.12179 0.00000 95 0.47000 0.00000 0.47000 0.00000 0.12310 0.00000 96 0.47500 0.00000 0.47500 0.00000 0.12441 0.00000 97 0.48000 0.00000 0.48000 0.00000 0.12571 0.00000 98 0.48500 0.00000 0.48500 0.00000 0.12702 0.00000 99 0.49000 0.00000 0.49000 0.00000 0.12833 0.00000 100 0.49500 0.00000 0.49500 0.00000 0.12964 0.00000 101 0.50000 0.00000 0.50000 0.00000 0.13095 0.00000 102 0.50000 0.00500 0.50500 0.00131 0.13095 0.00000 103 0.50000 0.01000 0.51000 0.00262 0.13095 0.00000 104 0.50000 0.01500 0.51500 0.00393 0.13095 0.00000 105 0.50000 0.02000 0.52000 0.00524 0.13095 0.00000 106 0.50000 0.02500 0.52500 0.00655 0.13095 0.00000 107 0.50000 0.03000 0.53000 0.00786 0.13095 0.00000 108 0.50000 0.03500 0.53500 0.00917 0.13095 0.00000 109 0.50000 0.04000 0.54000 0.01048 0.13095 0.00000 110 0.50000 0.04500 0.54500 0.01179 0.13095 0.00000 111 0.50000 0.05000 0.55000 0.01310 0.13095 0.00000 112 0.50000 0.05500 0.55500 0.01440 0.13095 0.00000 113 0.50000 0.06000 0.56000 0.01571 0.13095 0.00000 114 0.50000 0.06500 0.56500 0.01702 0.13095 0.00000 115 0.50000 0.07000 0.57000 0.01833 0.13095 0.00000 116 0.50000 0.07500 0.57500 0.01964 0.13095 0.00000 117 0.50000 0.08000 0.58000 0.02095 0.13095 0.00000 118 0.50000 0.08500 0.58500 0.02226 0.13095 0.00000 119 0.50000 0.09000 0.59000 0.02357 0.13095 0.00000 120 0.50000 0.09500 0.59500 0.02488 0.13095 0.00000 121 0.50000 0.10000 0.60000 0.02619 0.13095 0.00000 122 0.50000 0.10500 0.60500 0.02750 0.13095 0.00000 123 0.50000 0.11000 0.61000 0.02881 0.13095 0.00000 124 0.50000 0.11500 0.61500 0.03012 0.13095 0.00000 125 0.50000 0.12000 0.62000 0.03143 0.13095 0.00000 126 0.50000 0.12500 0.62500 0.03274 0.13095 0.00000 127 0.50000 0.13000 0.63000 0.03405 0.13095 0.00000 128 0.50000 0.13500 0.63500 0.03536 0.13095 0.00000 129 0.50000 0.14000 0.64000 0.03667 0.13095 0.00000 130 0.50000 0.14500 0.64500 0.03798 0.13095 0.00000 131 0.50000 0.15000 0.65000 0.03929 0.13095 0.00000 132 0.50000 0.15500 0.65500 0.04060 0.13095 0.00000 133 0.50000 0.16000 0.66000 0.04190 0.13095 0.00000 134 0.50000 0.16500 0.66500 0.04321 0.13095 0.00000 135 0.50000 0.17000 0.67000 0.04452 0.13095 0.00000 136 0.50000 0.17500 0.67500 0.04583 0.13095 0.00000 137 0.50000 0.18000 0.68000 0.04714 0.13095 0.00000 138 0.50000 0.18500 0.68500 0.04845 0.13095 0.00000 139 0.50000 0.19000 0.69000 0.04976 0.13095 0.00000 140 0.50000 0.19500 0.69500 0.05107 0.13095 0.00000 141 0.50000 0.20000 0.70000 0.05238 0.13095 0.00000 142 0.50000 0.20500 0.70500 0.05369 0.13095 0.00000 143 0.50000 0.21000 0.71000 0.05500 0.13095 0.00000 144 0.50000 0.21500 0.71500 0.05631 0.13095 0.00000 145 0.50000 0.22000 0.72000 0.05762 0.13095 0.00000 146 0.50000 0.22500 0.72500 0.05893 0.13095 0.00000 147 0.50000 0.23000 0.73000 0.06024 0.13095 0.00000 148 0.50000 0.23500 0.73500 0.06155 0.13095 0.00000 149 0.50000 0.24000 0.74000 0.06286 0.13095 0.00000 150 0.50000 0.24500 0.74500 0.06417 0.13095 0.00000 151 0.50000 0.25000 0.75000 0.06548 0.13095 0.00000 152 0.50000 0.25500 0.75500 0.06679 0.13095 0.00000 153 0.50000 0.26000 0.76000 0.06810 0.13095 0.00000 154 0.50000 0.26500 0.76500 0.06941 0.13095 0.00000 155 0.50000 0.27000 0.77000 0.07071 0.13095 0.00000 156 0.50000 0.27500 0.77500 0.07202 0.13095 0.00000 157 0.50000 0.28000 0.78000 0.07333 0.13095 0.00000 158 0.50000 0.28500 0.78500 0.07464 0.13095 0.00000 159 0.50000 0.29000 0.79000 0.07595 0.13095 0.00000 160 0.50000 0.29500 0.79500 0.07726 0.13095 0.00000 161 0.50000 0.30000 0.80000 0.07857 0.13095 0.00000 162 0.50000 0.30500 0.80500 0.07988 0.13095 0.00000 163 0.50000 0.31000 0.81000 0.08119 0.13095 0.00000 164 0.50000 0.31500 0.81500 0.08250 0.13095 0.00000 165 0.50000 0.32000 0.82000 0.08381 0.13095 0.00000 166 0.50000 0.32500 0.82500 0.08512 0.13095 0.00000 167 0.50000 0.33000 0.83000 0.08643 0.13095 0.00000 168 0.50000 0.33500 0.83500 0.08774 0.13095 0.00000 169 0.50000 0.34000 0.84000 0.08905 0.13095 0.00000 170 0.50000 0.34500 0.84500 0.09036 0.13095 0.00000 171 0.50000 0.35000 0.85000 0.09167 0.13095 0.00000 172 0.50000 0.35500 0.85500 0.09298 0.13095 0.00000 173 0.50000 0.36000 0.86000 0.09429 0.13095 0.00000 174 0.50000 0.36500 0.86500 0.09560 0.13095 0.00000 175 0.50000 0.37000 0.87000 0.09691 0.13095 0.00000 176 0.50000 0.37500 0.87500 0.09821 0.13095 0.00000 177 0.50000 0.38000 0.88000 0.09952 0.13095 0.00000 178 0.50000 0.38500 0.88500 0.10083 0.13095 0.00000 179 0.50000 0.39000 0.89000 0.10214 0.13095 0.00000 180 0.50000 0.39500 0.89500 0.10345 0.13095 0.00000 181 0.50000 0.40000 0.90000 0.10476 0.13095 0.00000 182 0.50000 0.40500 0.90500 0.10607 0.13095 0.00000 183 0.50000 0.41000 0.91000 0.10738 0.13095 0.00000 184 0.50000 0.41500 0.91500 0.10869 0.13095 0.00000 185 0.50000 0.42000 0.92000 0.11000 0.13095 0.00000 186 0.50000 0.42500 0.92500 0.11131 0.13095 0.00000 187 0.50000 0.43000 0.93000 0.11262 0.13095 0.00000 188 0.50000 0.43500 0.93500 0.11393 0.13095 0.00000 189 0.50000 0.44000 0.94000 0.11524 0.13095 0.00000 190 0.50000 0.44500 0.94500 0.11655 0.13095 0.00000 191 0.50000 0.45000 0.95000 0.11786 0.13095 0.00000 192 0.50000 0.45500 0.95500 0.11917 0.13095 0.00000 193 0.50000 0.46000 0.96000 0.12048 0.13095 0.00000 194 0.50000 0.46500 0.96500 0.12179 0.13095 0.00000 195 0.50000 0.47000 0.97000 0.12310 0.13095 0.00000 196 0.50000 0.47500 0.97500 0.12441 0.13095 0.00000 197 0.50000 0.48000 0.98000 0.12571 0.13095 0.00000 198 0.50000 0.48500 0.98500 0.12702 0.13095 0.00000 199 0.50000 0.49000 0.99000 0.12833 0.13095 0.00000 200 0.50000 0.49500 0.99500 0.12964 0.13095 0.00000 201 0.50000 0.50000 1.00000 0.13095 0.13095 0.00000 202 0.49643 0.49643 0.99286 0.13002 0.13002 0.00000 203 0.49286 0.49286 0.98571 0.12908 0.12908 0.00000 204 0.48929 0.48929 0.97857 0.12815 0.12815 0.00000 205 0.48571 0.48571 0.97143 0.12721 0.12721 0.00000 206 0.48214 0.48214 0.96429 0.12628 0.12628 0.00000 207 0.47857 0.47857 0.95714 0.12534 0.12534 0.00000 208 0.47500 0.47500 0.95000 0.12441 0.12441 0.00000 209 0.47143 0.47143 0.94286 0.12347 0.12347 0.00000 210 0.46786 0.46786 0.93571 0.12253 0.12253 0.00000 211 0.46429 0.46429 0.92857 0.12160 0.12160 0.00000 212 0.46071 0.46071 0.92143 0.12066 0.12066 0.00000 213 0.45714 0.45714 0.91429 0.11973 0.11973 0.00000 214 0.45357 0.45357 0.90714 0.11879 0.11879 0.00000 215 0.45000 0.45000 0.90000 0.11786 0.11786 0.00000 216 0.44643 0.44643 0.89286 0.11692 0.11692 0.00000 217 0.44286 0.44286 0.88571 0.11599 0.11599 0.00000 218 0.43929 0.43929 0.87857 0.11505 0.11505 0.00000 219 0.43571 0.43571 0.87143 0.11412 0.11412 0.00000 220 0.43214 0.43214 0.86429 0.11318 0.11318 0.00000 221 0.42857 0.42857 0.85714 0.11225 0.11225 0.00000 222 0.42500 0.42500 0.85000 0.11131 0.11131 0.00000 223 0.42143 0.42143 0.84286 0.11037 0.11037 0.00000 224 0.41786 0.41786 0.83571 0.10944 0.10944 0.00000 225 0.41429 0.41429 0.82857 0.10850 0.10850 0.00000 226 0.41071 0.41071 0.82143 0.10757 0.10757 0.00000 227 0.40714 0.40714 0.81429 0.10663 0.10663 0.00000 228 0.40357 0.40357 0.80714 0.10570 0.10570 0.00000 229 0.40000 0.40000 0.80000 0.10476 0.10476 0.00000 230 0.39643 0.39643 0.79286 0.10383 0.10383 0.00000 231 0.39286 0.39286 0.78571 0.10289 0.10289 0.00000 232 0.38929 0.38929 0.77857 0.10196 0.10196 0.00000 233 0.38571 0.38571 0.77143 0.10102 0.10102 0.00000 234 0.38214 0.38214 0.76429 0.10009 0.10009 0.00000 235 0.37857 0.37857 0.75714 0.09915 0.09915 0.00000 236 0.37500 0.37500 0.75000 0.09821 0.09821 0.00000 237 0.37146 0.37146 0.74292 0.09729 0.09729 0.00000 238 0.36792 0.36792 0.73585 0.09636 0.09636 0.00000 239 0.36439 0.36439 0.72877 0.09544 0.09544 0.00000 240 0.36085 0.36085 0.72170 0.09451 0.09451 0.00000 241 0.35731 0.35731 0.71462 0.09358 0.09358 0.00000 242 0.35377 0.35377 0.70755 0.09266 0.09266 0.00000 243 0.35024 0.35024 0.70047 0.09173 0.09173 0.00000 244 0.34670 0.34670 0.69340 0.09080 0.09080 0.00000 245 0.34316 0.34316 0.68632 0.08988 0.08988 0.00000 246 0.33962 0.33962 0.67925 0.08895 0.08895 0.00000 247 0.33608 0.33608 0.67217 0.08802 0.08802 0.00000 248 0.33255 0.33255 0.66509 0.08710 0.08710 0.00000 249 0.32901 0.32901 0.65802 0.08617 0.08617 0.00000 250 0.32547 0.32547 0.65094 0.08524 0.08524 0.00000 251 0.32193 0.32193 0.64387 0.08432 0.08432 0.00000 252 0.31840 0.31840 0.63679 0.08339 0.08339 0.00000 253 0.31486 0.31486 0.62972 0.08246 0.08246 0.00000 254 0.31132 0.31132 0.62264 0.08154 0.08154 0.00000 255 0.30778 0.30778 0.61557 0.08061 0.08061 0.00000 256 0.30425 0.30425 0.60849 0.07968 0.07968 0.00000 257 0.30071 0.30071 0.60142 0.07876 0.07876 0.00000 258 0.29717 0.29717 0.59434 0.07783 0.07783 0.00000 259 0.29363 0.29363 0.58726 0.07690 0.07690 0.00000 260 0.29009 0.29009 0.58019 0.07598 0.07598 0.00000 261 0.28656 0.28656 0.57311 0.07505 0.07505 0.00000 262 0.28302 0.28302 0.56604 0.07412 0.07412 0.00000 263 0.27948 0.27948 0.55896 0.07320 0.07320 0.00000 264 0.27594 0.27594 0.55189 0.07227 0.07227 0.00000 265 0.27241 0.27241 0.54481 0.07134 0.07134 0.00000 266 0.26887 0.26887 0.53774 0.07042 0.07042 0.00000 267 0.26533 0.26533 0.53066 0.06949 0.06949 0.00000 268 0.26179 0.26179 0.52358 0.06856 0.06856 0.00000 269 0.25825 0.25825 0.51651 0.06764 0.06764 0.00000 270 0.25472 0.25472 0.50943 0.06671 0.06671 0.00000 271 0.25118 0.25118 0.50236 0.06579 0.06579 0.00000 272 0.24764 0.24764 0.49528 0.06486 0.06486 0.00000 273 0.24410 0.24410 0.48821 0.06393 0.06393 0.00000 274 0.24057 0.24057 0.48113 0.06301 0.06301 0.00000 275 0.23703 0.23703 0.47406 0.06208 0.06208 0.00000 276 0.23349 0.23349 0.46698 0.06115 0.06115 0.00000 277 0.22995 0.22995 0.45991 0.06023 0.06023 0.00000 278 0.22642 0.22642 0.45283 0.05930 0.05930 0.00000 279 0.22288 0.22288 0.44575 0.05837 0.05837 0.00000 280 0.21934 0.21934 0.43868 0.05745 0.05745 0.00000 281 0.21580 0.21580 0.43160 0.05652 0.05652 0.00000 282 0.21226 0.21226 0.42453 0.05559 0.05559 0.00000 283 0.20873 0.20873 0.41745 0.05467 0.05467 0.00000 284 0.20519 0.20519 0.41038 0.05374 0.05374 0.00000 285 0.20165 0.20165 0.40330 0.05281 0.05281 0.00000 286 0.19811 0.19811 0.39623 0.05189 0.05189 0.00000 287 0.19458 0.19458 0.38915 0.05096 0.05096 0.00000 288 0.19104 0.19104 0.38208 0.05003 0.05003 0.00000 289 0.18750 0.18750 0.37500 0.04911 0.04911 0.00000 290 0.18396 0.18396 0.36792 0.04818 0.04818 0.00000 291 0.18042 0.18042 0.36085 0.04725 0.04725 0.00000 292 0.17689 0.17689 0.35377 0.04633 0.04633 0.00000 293 0.17335 0.17335 0.34670 0.04540 0.04540 0.00000 294 0.16981 0.16981 0.33962 0.04447 0.04447 0.00000 295 0.16627 0.16627 0.33255 0.04355 0.04355 0.00000 296 0.16274 0.16274 0.32547 0.04262 0.04262 0.00000 297 0.15920 0.15920 0.31840 0.04169 0.04169 0.00000 298 0.15566 0.15566 0.31132 0.04077 0.04077 0.00000 299 0.15212 0.15212 0.30425 0.03984 0.03984 0.00000 300 0.14858 0.14858 0.29717 0.03892 0.03892 0.00000 301 0.14505 0.14505 0.29009 0.03799 0.03799 0.00000 302 0.14151 0.14151 0.28302 0.03706 0.03706 0.00000 303 0.13797 0.13797 0.27594 0.03614 0.03614 0.00000 304 0.13443 0.13443 0.26887 0.03521 0.03521 0.00000 305 0.13090 0.13090 0.26179 0.03428 0.03428 0.00000 306 0.12736 0.12736 0.25472 0.03336 0.03336 0.00000 307 0.12382 0.12382 0.24764 0.03243 0.03243 0.00000 308 0.12028 0.12028 0.24057 0.03150 0.03150 0.00000 309 0.11675 0.11675 0.23349 0.03058 0.03058 0.00000 310 0.11321 0.11321 0.22642 0.02965 0.02965 0.00000 311 0.10967 0.10967 0.21934 0.02872 0.02872 0.00000 312 0.10613 0.10613 0.21226 0.02780 0.02780 0.00000 313 0.10259 0.10259 0.20519 0.02687 0.02687 0.00000 314 0.09906 0.09906 0.19811 0.02594 0.02594 0.00000 315 0.09552 0.09552 0.19104 0.02502 0.02502 0.00000 316 0.09198 0.09198 0.18396 0.02409 0.02409 0.00000 317 0.08844 0.08844 0.17689 0.02316 0.02316 0.00000 318 0.08491 0.08491 0.16981 0.02224 0.02224 0.00000 319 0.08137 0.08137 0.16274 0.02131 0.02131 0.00000 320 0.07783 0.07783 0.15566 0.02038 0.02038 0.00000 321 0.07429 0.07429 0.14858 0.01946 0.01946 0.00000 322 0.07075 0.07075 0.14151 0.01853 0.01853 0.00000 323 0.06722 0.06722 0.13443 0.01760 0.01760 0.00000 324 0.06368 0.06368 0.12736 0.01668 0.01668 0.00000 325 0.06014 0.06014 0.12028 0.01575 0.01575 0.00000 326 0.05660 0.05660 0.11321 0.01482 0.01482 0.00000 327 0.05307 0.05307 0.10613 0.01390 0.01390 0.00000 328 0.04953 0.04953 0.09906 0.01297 0.01297 0.00000 329 0.04599 0.04599 0.09198 0.01205 0.01205 0.00000 330 0.04245 0.04245 0.08491 0.01112 0.01112 0.00000 331 0.03892 0.03892 0.07783 0.01019 0.01019 0.00000 332 0.03538 0.03538 0.07075 0.00927 0.00927 0.00000 333 0.03184 0.03184 0.06368 0.00834 0.00834 0.00000 334 0.02830 0.02830 0.05660 0.00741 0.00741 0.00000 335 0.02476 0.02476 0.04953 0.00649 0.00649 0.00000 336 0.02123 0.02123 0.04245 0.00556 0.00556 0.00000 337 0.01769 0.01769 0.03538 0.00463 0.00463 0.00000 338 0.01415 0.01415 0.02830 0.00371 0.00371 0.00000 339 0.01061 0.01061 0.02123 0.00278 0.00278 0.00000 340 0.00708 0.00708 0.01415 0.00185 0.00185 0.00000 341 0.00354 0.00354 0.00708 0.00093 0.00093 0.00000 342 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 343 0.00581 0.00581 0.00581 0.00076 0.00076 0.00076 344 0.01163 0.01163 0.01163 0.00152 0.00152 0.00152 345 0.01744 0.01744 0.01744 0.00228 0.00228 0.00228 346 0.02326 0.02326 0.02326 0.00305 0.00305 0.00305 347 0.02907 0.02907 0.02907 0.00381 0.00381 0.00381 348 0.03488 0.03488 0.03488 0.00457 0.00457 0.00457 349 0.04070 0.04070 0.04070 0.00533 0.00533 0.00533 350 0.04651 0.04651 0.04651 0.00609 0.00609 0.00609 351 0.05233 0.05233 0.05233 0.00685 0.00685 0.00685 352 0.05814 0.05814 0.05814 0.00761 0.00761 0.00761 353 0.06395 0.06395 0.06395 0.00837 0.00837 0.00837 354 0.06977 0.06977 0.06977 0.00914 0.00914 0.00914 355 0.07558 0.07558 0.07558 0.00990 0.00990 0.00990 356 0.08140 0.08140 0.08140 0.01066 0.01066 0.01066 357 0.08721 0.08721 0.08721 0.01142 0.01142 0.01142 358 0.09302 0.09302 0.09302 0.01218 0.01218 0.01218 359 0.09884 0.09884 0.09884 0.01294 0.01294 0.01294 360 0.10465 0.10465 0.10465 0.01370 0.01370 0.01370 361 0.11047 0.11047 0.11047 0.01447 0.01447 0.01447 362 0.11628 0.11628 0.11628 0.01523 0.01523 0.01523 363 0.12209 0.12209 0.12209 0.01599 0.01599 0.01599 364 0.12791 0.12791 0.12791 0.01675 0.01675 0.01675 365 0.13372 0.13372 0.13372 0.01751 0.01751 0.01751 366 0.13953 0.13953 0.13953 0.01827 0.01827 0.01827 367 0.14535 0.14535 0.14535 0.01903 0.01903 0.01903 368 0.15116 0.15116 0.15116 0.01980 0.01980 0.01980 369 0.15698 0.15698 0.15698 0.02056 0.02056 0.02056 370 0.16279 0.16279 0.16279 0.02132 0.02132 0.02132 371 0.16860 0.16860 0.16860 0.02208 0.02208 0.02208 372 0.17442 0.17442 0.17442 0.02284 0.02284 0.02284 373 0.18023 0.18023 0.18023 0.02360 0.02360 0.02360 374 0.18605 0.18605 0.18605 0.02436 0.02436 0.02436 375 0.19186 0.19186 0.19186 0.02512 0.02512 0.02512 376 0.19767 0.19767 0.19767 0.02589 0.02589 0.02589 377 0.20349 0.20349 0.20349 0.02665 0.02665 0.02665 378 0.20930 0.20930 0.20930 0.02741 0.02741 0.02741 379 0.21512 0.21512 0.21512 0.02817 0.02817 0.02817 380 0.22093 0.22093 0.22093 0.02893 0.02893 0.02893 381 0.22674 0.22674 0.22674 0.02969 0.02969 0.02969 382 0.23256 0.23256 0.23256 0.03045 0.03045 0.03045 383 0.23837 0.23837 0.23837 0.03122 0.03122 0.03122 384 0.24419 0.24419 0.24419 0.03198 0.03198 0.03198 385 0.25000 0.25000 0.25000 0.03274 0.03274 0.03274 386 0.25581 0.25581 0.25581 0.03350 0.03350 0.03350 387 0.26163 0.26163 0.26163 0.03426 0.03426 0.03426 388 0.26744 0.26744 0.26744 0.03502 0.03502 0.03502 389 0.27326 0.27326 0.27326 0.03578 0.03578 0.03578 390 0.27907 0.27907 0.27907 0.03654 0.03654 0.03654 391 0.28488 0.28488 0.28488 0.03731 0.03731 0.03731 392 0.29070 0.29070 0.29070 0.03807 0.03807 0.03807 393 0.29651 0.29651 0.29651 0.03883 0.03883 0.03883 394 0.30233 0.30233 0.30233 0.03959 0.03959 0.03959 395 0.30814 0.30814 0.30814 0.04035 0.04035 0.04035 396 0.31395 0.31395 0.31395 0.04111 0.04111 0.04111 397 0.31977 0.31977 0.31977 0.04187 0.04187 0.04187 398 0.32558 0.32558 0.32558 0.04264 0.04264 0.04264 399 0.33140 0.33140 0.33140 0.04340 0.04340 0.04340 400 0.33721 0.33721 0.33721 0.04416 0.04416 0.04416 401 0.34302 0.34302 0.34302 0.04492 0.04492 0.04492 402 0.34884 0.34884 0.34884 0.04568 0.04568 0.04568 403 0.35465 0.35465 0.35465 0.04644 0.04644 0.04644 404 0.36047 0.36047 0.36047 0.04720 0.04720 0.04720 405 0.36628 0.36628 0.36628 0.04797 0.04797 0.04797 406 0.37209 0.37209 0.37209 0.04873 0.04873 0.04873 407 0.37791 0.37791 0.37791 0.04949 0.04949 0.04949 408 0.38372 0.38372 0.38372 0.05025 0.05025 0.05025 409 0.38953 0.38953 0.38953 0.05101 0.05101 0.05101 410 0.39535 0.39535 0.39535 0.05177 0.05177 0.05177 411 0.40116 0.40116 0.40116 0.05253 0.05253 0.05253 412 0.40698 0.40698 0.40698 0.05329 0.05329 0.05329 413 0.41279 0.41279 0.41279 0.05406 0.05406 0.05406 414 0.41860 0.41860 0.41860 0.05482 0.05482 0.05482 415 0.42442 0.42442 0.42442 0.05558 0.05558 0.05558 416 0.43023 0.43023 0.43023 0.05634 0.05634 0.05634 417 0.43605 0.43605 0.43605 0.05710 0.05710 0.05710 418 0.44186 0.44186 0.44186 0.05786 0.05786 0.05786 419 0.44767 0.44767 0.44767 0.05862 0.05862 0.05862 420 0.45349 0.45349 0.45349 0.05939 0.05939 0.05939 421 0.45930 0.45930 0.45930 0.06015 0.06015 0.06015 422 0.46512 0.46512 0.46512 0.06091 0.06091 0.06091 423 0.47093 0.47093 0.47093 0.06167 0.06167 0.06167 424 0.47674 0.47674 0.47674 0.06243 0.06243 0.06243 425 0.48256 0.48256 0.48256 0.06319 0.06319 0.06319 426 0.48837 0.48837 0.48837 0.06395 0.06395 0.06395 427 0.49419 0.49419 0.49419 0.06472 0.06472 0.06472 428 0.50000 0.50000 0.50000 0.06548 0.06548 0.06548
As you can see, in the present calculation the path is as follows : \Gamma - X - W - X’ - K - \Gamma - L. Concerning the results, you can compare the phonon spectrum obtained in this tutorial with the first figure of this paper. As you can see, the overall agreement is very good but not perfect due the too small number of atomic configurations (20) and the difference between the experimental (80 K) and theoretical (900 K) temperatures. If you perform AIMD simulations at various temperatures and store more than 20 atomic configurations, you will obtain the following picture :

Warning
The tatdep1_1qpt.dat file do not be confused with the tatdep1_1qbz.dat file which defines the Monkhorst-Pack (MP) q-point mesh used to compute the vDOS : g(\omega)=\frac{1}{3N_a}\sum_{s=1}^{3N_a}\sum_{\mathbf{q}\in BZ} \delta(\omega-\omega_s(\mathbf{q})) such as \int_0^{\omega_{max}} g(\omega)d\omega =1, with \omega_{max} the highest phonon frequency of the system. The vDOS is written in the tatdep1_1vdos.dat file. You may plot it to verify that the vDOS is consistent with the phonon spectrum.
2.2.3 The thermodynamic file tatdep1_1thermo.dat¶
============= Direct results (without any inter/extrapolation) ==================
 For present temperature (in Kelvin): T=    900.000
   The cold contribution (in eV/atom): U_0 =     -56.407
   The specific heat (in k_b/atom): C_v=     2.972
   The vibrational entropy (in k_b/atom): S_vib =     6.637
   The internal energy (in eV/atom): U_vib =     0.235
   The vibrational contribution (in eV/atom): F_vib = U_vib -T.S_vib =    -0.280
   The harmonic free energy (in eV/atom) -->  F_tot^HA = U_0 + F_vib =     -56.687
   Useful quantities for melting :
      The mean square displacement (in a.u.): sqrt(<u^2>) =     0.590
      The <Omega^(-2)> factor (in THz^(-2)) =     0.138
      The Wigner-Seitz radius (in a.u.) : d_at =     5.969
      The average mass / proton-electron mass ratio (in a.u.) =    26.982
      The Lindemann constant : sqrt(<u^2>)/d_at =     0.099
      The integral of vDOS =     1.000
============= Harmonic Approximation (HA) ==================
   Note that the following results come from an EXTRAPOLATION:
     1/ F_vib^HA(T) is computed for each T using vDOS(T=  900)
     2/ F_tot^HA(T) = F_vib^HA(T) + U_0
   T         F_vib^HA(T)   F_tot^HA(T)           C_v(T)         S_vib(T)        U_vib(T)        MSD(T)
   100           0.034         -56.373           1.618           0.908           0.042           0.229
   200           0.020         -56.387           2.511           2.374           0.061           0.291
   300          -0.005         -56.413           2.765           3.449           0.084           0.347
   400          -0.039         -56.446           2.864           4.260           0.108           0.397
   500          -0.078         -56.485           2.912           4.905           0.133           0.442
   600          -0.123         -56.530           2.938           5.438           0.158           0.483
   700          -0.172         -56.579           2.954           5.893           0.184           0.521
   800          -0.224         -56.631           2.965           6.288           0.209           0.556
   900          -0.280         -56.687           2.972           6.637           0.235           0.590
  1000          -0.339         -56.746           2.978           6.951           0.260           0.621
  1100          -0.400         -56.807           2.981           7.235           0.286           0.651
  1200          -0.463         -56.870           2.984           7.494           0.312           0.680
  1300          -0.529         -56.936           2.987           7.733           0.338           0.708
  1400          -0.596         -57.004           2.989           7.955           0.363           0.734
  1500          -0.666         -57.073           2.990           8.161           0.389           0.760
  1600          -0.737         -57.144           2.991           8.354           0.415           0.785
  1700          -0.810         -57.217           2.992           8.535           0.441           0.809
  1800          -0.884         -57.291           2.993           8.707           0.466           0.832
  1900          -0.960         -57.367           2.994           8.868           0.492           0.855
  2000          -1.037         -57.444           2.994           9.022           0.518           0.877
  2100          -1.115         -57.523           2.995           9.168           0.544           0.899
  2200          -1.195         -57.602           2.995           9.307           0.570           0.920
  2300          -1.276         -57.683           2.996           9.441           0.595           0.941
  2400          -1.358         -57.765           2.996           9.568           0.621           0.961
  2500          -1.441         -57.848           2.996           9.690           0.647           0.980
  2600          -1.525         -57.932           2.997           9.808           0.673           1.000
  2700          -1.610         -58.017           2.997           9.921           0.699           1.019
  2800          -1.696         -58.103           2.997          10.030           0.725           1.038
  2900          -1.782         -58.190           2.997          10.135           0.750           1.056
  3000          -1.870         -58.277           2.997          10.237           0.776           1.074
  3100          -1.959         -58.366           2.998          10.335           0.802           1.092
  3200          -2.048         -58.456           2.998          10.430           0.828           1.109
  3300          -2.139         -58.546           2.998          10.522           0.854           1.126
  3400          -2.230         -58.637           2.998          10.612           0.880           1.143
  3500          -2.321         -58.729           2.998          10.699           0.905           1.160
  3600          -2.414         -58.821           2.998          10.783           0.931           1.176
  3700          -2.507         -58.915           2.998          10.865           0.957           1.193
  3800          -2.601         -59.009           2.998          10.945           0.983           1.209
  3900          -2.696         -59.103           2.999          11.023           1.009           1.224
  4000          -2.791         -59.199           2.999          11.099           1.035           1.240
  4100          -2.887         -59.294           2.999          11.173           1.060           1.255
  4200          -2.984         -59.391           2.999          11.246           1.086           1.271
  4300          -3.081         -59.488           2.999          11.316           1.112           1.286
  4400          -3.179         -59.586           2.999          11.385           1.138           1.300
  4500          -3.277         -59.685           2.999          11.452           1.164           1.315
  4600          -3.376         -59.783           2.999          11.518           1.190           1.330
  4700          -3.476         -59.883           2.999          11.583           1.215           1.344
  4800          -3.576         -59.983           2.999          11.646           1.241           1.358
  4900          -3.676         -60.084           2.999          11.708           1.267           1.372
  5000          -3.778         -60.185           2.999          11.768           1.293           1.386
  5100          -3.879         -60.287           2.999          11.828           1.319           1.400
  5200          -3.981         -60.389           2.999          11.886           1.345           1.414
  5300          -4.084         -60.491           2.999          11.943           1.371           1.427
  5400          -4.187         -60.595           2.999          11.999           1.396           1.441
  5500          -4.291         -60.698           2.999          12.054           1.422           1.454
  5600          -4.395         -60.802           2.999          12.108           1.448           1.467
  5700          -4.500         -60.907           2.999          12.161           1.474           1.480
  5800          -4.605         -61.012           2.999          12.214           1.500           1.493
  5900          -4.710         -61.117           2.999          12.265           1.526           1.506
  6000          -4.816         -61.223           2.999          12.315           1.551           1.519
  6100          -4.922         -61.330           2.999          12.365           1.577           1.531
  6200          -5.029         -61.436           2.999          12.414           1.603           1.544
  6300          -5.136         -61.544           2.999          12.462           1.629           1.556
  6400          -5.244         -61.651           2.999          12.509           1.655           1.568
  6500          -5.352         -61.759           2.999          12.555           1.681           1.581
  6600          -5.460         -61.868           2.999          12.601           1.707           1.593
  6700          -5.569         -61.976           2.999          12.646           1.732           1.605
  6800          -5.678         -62.086           3.000          12.691           1.758           1.617
  6900          -5.788         -62.195           3.000          12.734           1.784           1.628
  7000          -5.898         -62.305           3.000          12.778           1.810           1.640
  7100          -6.008         -62.415           3.000          12.820           1.836           1.652
  7200          -6.119         -62.526           3.000          12.862           1.862           1.663
  7300          -6.230         -62.637           3.000          12.904           1.887           1.675
  7400          -6.341         -62.748           3.000          12.944           1.913           1.686
  7500          -6.453         -62.860           3.000          12.985           1.939           1.698
  7600          -6.565         -62.972           3.000          13.024           1.965           1.709
  7700          -6.677         -63.085           3.000          13.064           1.991           1.720
  7800          -6.790         -63.197           3.000          13.102           2.017           1.731
  7900          -6.903         -63.310           3.000          13.140           2.043           1.742
  8000          -7.016         -63.424           3.000          13.178           2.068           1.753
  8100          -7.130         -63.537           3.000          13.215           2.094           1.764
  8200          -7.244         -63.651           3.000          13.252           2.120           1.775
  8300          -7.359         -63.766           3.000          13.289           2.146           1.786
  8400          -7.473         -63.881           3.000          13.325           2.172           1.797
  8500          -7.588         -63.995           3.000          13.360           2.198           1.807
  8600          -7.704         -64.111           3.000          13.395           2.224           1.818
  8700          -7.819         -64.226           3.000          13.430           2.249           1.829
  8800          -7.935         -64.342           3.000          13.464           2.275           1.839
  8900          -8.051         -64.458           3.000          13.498           2.301           1.849
  9000          -8.168         -64.575           3.000          13.531           2.327           1.860
  9100          -8.284         -64.692           3.000          13.565           2.353           1.870
  9200          -8.401         -64.809           3.000          13.597           2.379           1.880
  9300          -8.519         -64.926           3.000          13.630           2.404           1.891
  9400          -8.636         -65.044           3.000          13.662           2.430           1.901
  9500          -8.754         -65.161           3.000          13.694           2.456           1.911
  9600          -8.872         -65.280           3.000          13.725           2.482           1.921
  9700          -8.991         -65.398           3.000          13.756           2.508           1.931
  9800          -9.109         -65.517           3.000          13.787           2.534           1.941
  9900          -9.228         -65.636           3.000          13.817           2.560           1.951
 10000          -9.348         -65.755           3.000          13.848           2.585           1.960
In this file, we print all the thermodynamic data that we can compute by using the phonon spectrum and/or the vDOS. The main quantity is the free energy \mathcal{F}. This one can be splitted in two parts:
The first part is the cold contribution (at T = 0 K) whereas the second one is the vibrational contribution (with T \neq 0). The cold contribution can be computed using a ground state specific calculation or using the following formulation :
The vibrational contributions (free energy F_{\rm vib}, internal energy U_{\rm vib}, entropy S_{\rm vib} and heat capacity C_{\rm vib,V}) can be computed using the vDOS g(\omega) in the harmonic approximation (see the paper of Lee & Gonze [Lee1995]) :
All these thermodynamic data are computed and written in the tatdep1_1thermo.dat. Note that this file is divided in two parts :
- the first one is dedicated to the thermodynamic data obtained at the temperature defined by the input variable temperature.
 
============= Direct results (without any inter/extrapolation) ==================
 For present temperature (in Kelvin): T=    900.000
   The cold contribution (in eV/atom): U_0 =     -56.407
   The specific heat (in k_b/atom): C_v=     2.972
   The vibrational entropy (in k_b/atom): S_vib =     6.638
   The internal energy (in eV/atom): U_vib =     0.235
   The vibrational contribution (in eV/atom): F_vib = U_vib -T.S_vib =    -0.280
   The harmonic free energy (in eV/atom) -->  F_tot^HA = U_0 + F_vib =     -56.687
...
- whereas in the second one, the thermodynamic data are extrapolated at all the temperatures using a fixed vDOS.
 
============= Harmonic Approximation (HA) ==================
   Note that the following results come from an EXTRAPOLATION:
     1/ F_vib^HA(T) is computed for each T using vDOS(T=  900)
     2/ F_tot^HA(T) = F_vib^HA(T) + U_0
   T      F_vib^HA(T)   F_tot^HA(T)           C_v(T)         S_vib(T)        U_vib(T)        MSD(T)
   100          0.034        -56.373           1.618           0.909           0.042           0.230
   200          0.020        -56.387           2.511           2.374           0.061           0.291
   300         -0.005        -56.413           2.765           3.449           0.084           0.348
...
Note
In the harmonic approximation (HA), the phonon frequencies do not depend on the temperature but only on the volume V, so we have \omega_{\rm HA} = \omega(V). Using a constant vDOS, it’s then possible to compute all the thermodynamic data, whatever the temperature “\beta” (see the equations above). In this case, the temperature variation of the thermodynamic quantities comes from the filling of phononic states using the Bose-Einstein statistics. To go beyond, and capture the thermal expansion for example, we can assume that the temperature effects are implicit through the variation of the volume V(T). This is the quasi-harmonic approximation (QHA) : \omega_{\rm QHA}=\omega(V(T)). If in many cases the QHA gives excellent results, it fails to reproduce an explicit variation of the thermodynamic data with respect to the temperature (by definition, using QHA, the phonon frequencies cannot vary at constant volume ; i.e. along an isochore). This explicit variation comes from anharmonic effects and only be captured by going beyond the second order in the energy expansion. That is the work done by aTDEP, by recasting all the 3rd, 4th… terms of the energy expansion within the 2nd order, in an effective way. Since the 2nd order effective IFC now takes into account all these terms, it captures the temperature effects and we have \omega_{\rm Anh}=\omega(T,V(T).
In the tatdep1_1thermo.dat file corresponding to the present calculation, several remarks can be done. You can see that the specific heat C_{\rm vib,V} is equal to 2.972 (in k_B units) at T = 900 K. In the second part of this file, you see that this quantity converges towards 3 at high temperature, as expected by the Dulong-Petit law (in this part we are in HA, so this law is fulfilled). This result is consistent with the experimental Debye temperature \Theta_D \approx 400 K ; at T = 900 K the behaviour of aluminum is classical and no longer quantum, since all the phononic states are filled. This can be seen also for another quantity. Plot the vibrational internal energy U_{\rm vib}^{ \rm HA} as the function of temperature (see the second part of the file). And plot also U_{\rm vib}^{\rm Classic}=3k_B T corresponding to the classic formulation (in eV, so use the conversion factor 1 eV = 11 604 K). You will see that the classic limit is achieved between 400 and 600 K, as expected.
2.3 Numerical convergence (accuracy and precision)¶
Several input variables have strong impact on the convergence of the effective IFC, phonon frequencies and thermodynamic data. Two of them are in the tatdep1_1.abi input file (in the “DEFINE_COMPUTATIONAL_DETAILS” section) and others comes from the AIMD simulations.
2.3.1 The cutoff radius rcut¶
The first one is the cutoff radius used to compute the 2nd order effective IFC. In practice, it defines the number of coordination shells included in the calculation.

Let us see again the tatdep1_1.abo output file and go to the “SECOND ORDER” section. You will see the list of the five shells included in the present calculation and sorted as a function of the shell radius : 0.0000000000 (the onsite interaction), 5.3997030363 (the 2nd shell), 7.6363332667 (the 3rd), 9.3525600046 (the 4th) and 10.7994060725 a.u. (the 5th).
 Shell number:           1
  Between atom    1 and     1 the distance is=    0.0000000000
...
 Shell number:           2
  Between atom    1 and     2 the distance is=    5.3997030363
...
 Shell number:           3
  Between atom    1 and     4 the distance is=    7.6363332667
...
 Shell number:           4
  Between atom    1 and    10 the distance is=    9.3525600046
...
 Shell number:           5
  Between atom    1 and    16 the distance is=   10.7994060725
...
In the tatdep1_1.abi input file the cutoff radius rcut equals to 11.45 (a.u.). Now, we will change this value to 6.0, 8.0 and 10.0 in order to have 2, 3 and 4 shells in the calculation, respectively. To do that, you can change the root of the output filename and replace the third line of the tatdep1_1.files file by “Rcut6”,
tatdep1_1.abi
tatdep1_1
Rcut6
then set “rcut 6.0” in the input file *tatdep1_1.abi” and finally launch atdep. Repeat this process for “Rcut8” and “Rcut10” and plot all the phonon spectra together :  
  xmgrace -nxy Rcut6omega.dat -nxy Rcut8omega.dat -nxy Rcut10omega.dat -nxy tatdep1_1omega.dat
You should get the following picture :

Concerning this very simple case, the frequencies are almost converged with only two shells (the onsite interaction and the 1st shell of coordination). In most situations, this is not the case. Here, we can see that some differences remain for rcut = 6.0 and 8.0 a.u. with respect to higher shell radii. With 4 shells and rcut = 10.0, the phonon spectrum seems to be converged and almost equal to 5 shells and rcut = 11.45. This is confirmed by AIMD simulations with 216 atoms in the supercell and a higher shell radius (see below).
Warning
The cutoff radius rcut cannot be greater than half the shortest dimension of the supercell. Otherwise, the shell will include spurious atomic vibrations. The only way to have a larger cutoff radius is to perform AIMD simulations with a larger supercell/number of atoms.
2.3.2 The number of atomic configurations¶
Another key quantity is the number of atomic configurations used in the calculation. This one is defined by the difference between two input variables : nstep_max - nstep_min. For simplicity, we generally use as input data files (etot.dat, xred.dat and fcart.dat) the whole trajectory coming from the AIMD simulations, with thousands of atomic configurations. So, for an AIMD trajectory with 5 000 time steps including a thermalization over 2 000 time steps, we can set nstep_max to 5 000 and nstep_min to 2 000. However, the 3 000 AIMD time steps really used are not uncorrelated and 99% of the information coming from them is in general useless.
The number of uncorrelated configurations needed for the calculation is direcly related to the number of non-zero and independent IFC coefficients which has to be computed. At the 2nd order, the whole effective IFC \mathbf{\Theta} is a (3N_a\times 3N_a) matrix. For instance, in the present calculation with N_a = 108 atoms, the whole IFC has 104 976 coefficients. So, if one wants to obtain them (using a least square method \mathbf{\Theta} = \mathbf{F} . \mathbf{u}^{-1}), it would require tens of thousands time steps, which is out of reach (see the seminal article of Hellman and coworkers [Hellman2011]),
Thanks to crystal symmetries, tensor symmetries (of the IFC, of the dynamical matrix, of the elastic tensor…) and invariances (translational and rotational) this huge number can be drastically reduced. For example, in the present calculation, we only need to compute 12 IFC coefficients (see “Total number of coefficients at the second order” in the tatdep1_1.abo output file) : 0 for the 1st shell then 3, 2, 4 and 3 coefficients for the higher shells. You can see their value in the output file (have a look at “List of (second order) IFC”). In fact, many of them are zero, symmetric or anti-symmetric, which gives the following picture of the whole IFC :
Thanks to this drastic reduction of the IFC coefficients, only 50 to 100 atomic uncorrelated configurations are generally needed to obtain converged properties at the 2nd order (in this example, and in the whole ABINIT package, we only propose examples with a maximum of 20 uncorrelated configurations in order to avoid a too huge amount of data). As previously discussed for the cutoff radius, we can study the convergence of the calculation with respect to the number of uncorrelated atomic configurations. Set nstep_max equal to 5 in tatdep1_1.abi, replace the root of the ouput file name by “Ntep5” in the tatdep1_1.files and launch atdep. Do it again for 8 time steps then plot :
  xmgrace -nxy Nstep5omega.dat -nxy Nstep8omega.dat -nxy tatdep1_1omega.dat
You should get the following picture :

In conclusion, a too small number of uncorrelated atomic configurations leads to a large error in the phonon spectrum. Therefore, do not hesitate to pursue the AIMD simulation (in order to accumulate a larger number of configurations) until achieving the convergence of the phonon spectrum.
Note
Another input variable impacts the number of atomic configurations : slice. This optional variable selects one configuration over slice, so the calculation will have (nstep_max-nstep_min)/slice configurations at all. To test its utility, you can add a line “slice 4” in the section “optional input variable”, change the root of the output file name by “slice” and launch atdep. The value of this optional variable is now echoed at the begining of the output file and you can find that the “real number of time steps” is now 5 (and no longer 20). Finally, you can plot the phonon spectrum and see the differences with respect to have the 20 configurations (tatdep1_1omega.dat) or only the 5 first (Nstep5omega.dat). 
2.3.3 Other important parameters¶
The aTDEP results depend on the aTDEP input variables, but also on the features of the AIMD simulation. Three of them have a real impact on the computational cost of the AIMD simulation but also on the aTDEP results :
- the number of AIMD time steps (this will allow to increase nstep_max in aTDEP). See above for the consequences.
 - the size of the supercell (this will allow to increase rcut in aTDEP). See the Figure below.
 - the k-point MP mesh (used to compute the electronic density). See the Figure below.
 

You can see that the \Gamma-point is never sufficient, as well with 108 atoms as with 216 atoms. The (2\times2\times2) k-point MP mesh gives an almost converged phonon spectrum (lower than 2% with respect to the (6\times6\times6) one), except at the \Gamma point (around 5%). This last point will have consequences on elastic constants (they are related to the slope of the acoustic branches at the \Gamma point).
Note
You can see the impact of the k-point mesh on the phonon spectrum of \beta-Zr in this recent paper [Anzellini2020]. All the calculations of this study are performed using ABINIT and aTDEP.
3. Temperature dependency of a soft mode : U-\alpha¶
This calculation is similar to the one performed in the following article [Bouchet2015].
Before proceeding, you can copy the next three series of input files in the current directory.
cp ../tatdep1_2.* . 
cp ../tatdep1_3.* . 
cp ../tatdep1_4.* . 
You can open the first input file :
NormalMode #DEFINE_UNITCELL brav 3 3 natom_unitcell 2 xred_unitcell 0.0 0.0 0.0 -0.2022 0.2022 0.5 typat_unitcell 1 1 ntypat 1 amu 2.38028900E+02 #DEFINE_SUPERCELL rprimd 21.5800000 0.0000000 0.0000000 0.0000000 22.1860000 0.0000000 0.0000000 0.0000000 28.1010000 multiplicity 4 4 0 -2 2 0 0 0 3 natom 96 typat 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 temperature 300 #DEFINE_COMPUTATIONAL_DETAILS nstep_max 20 nstep_min 1 rcut 10.79 #OPTIONAL_INPUT_VARIABLES use_ideal_positions 1 enunit 3 TheEnd #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = atdep #%% md_hist = tatdep1_2 #%% [files] #%% files_to_test = #%% tatdep1_2.abo, tolnlines = 1, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% tatdep1_2omega.dat, tolnlines = 5, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% tatdep1_2thermo.dat, tolnlines = 5, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% [paral_info] #%% max_nprocs = 10 #%% [extra_info] #%% authors = F. Bottin & J. Bouchet #%% keywords = atdep #%% description = #%% test aTDEP #%% topics = aTDEP #%%<END TEST_INFO>
As can be seen in the first lines, U-\alpha is an orthorombic (brav(1)=3) C-face centered (brav(2)=3) phase with two atoms in the unitcell : one at (0;0;0) and another at (-y;y;0.5) with y an internal parameter. Two optional input parameters are set : enunit=3 (the frequency unit is THz) and use_ideal_positions=1 (the atomic displacements are computed wrt the U-\alpha ideal positions).
Note
The T\neq 0 K equilibrium positions are not necessary equal to the T=0 K ideal positions. For instance, the y internal parameter of the U-\alpha phase evolves as a function of the temperature. Therefore, it could be needed to compute the phonon spectrum using the T\neq 0 K equilibrium positions (use_ideal_positions=0) rather than using a fixed y=0.2022 internal parameter. However, the the T\neq 0 K equilibrium positions are computed by atdep as an average over all the AIMD steps. And to achieve a good accuracy, a long AIMD trajectory (with a good statistic) is needed. In the present case (U-\alpha), with only 20 configurations, its impossible to evaluate the “T\neq 0 K equilibrium positions” accurately. So, to avoid spurious effects coming from a too bad description of the new “T\neq 0 K equilibrium positions”, we imposed the 0 K ideal positions whatever the temperature use_ideal_positions=1.    
3.1 Failure of the QHA¶
The \alpha phase of uranium (C-face centered orthorombic) is stable from room temperature up to 900 K. However, at low temperature (below 50 K), U-\alpha undergoes a phase transition towards the \alpha_1 structure (the \alpha structure is twofold along the [100] direction). This feature can be seen on the following Figure :

This phase transition goes with a phonon mode softening in the middle of the [100] direction :

For a long time, this phenomenon was puzzling, especially from a computational of view. In particular, if the DFPT is able to reproduce the phonon spectrum of U-\alpha at 300 K, the QHA fails to reproduce the correct behaviour of the soft mode at low temperature : in experiments the soft mode decreases as a function of the temperature, whereas using DFPT this mode increases when the volume decreases. At odds, this behaviour is correctly reproduced when performing simulations with an explicit treatment of the temperature (AIMD) and using a post-process able to capture the anharmonicity (atdep) :

3.2 Effect of the temperature¶
Here, we will reproduce this temperature effect between 300 K and 50 K. The tatdep1_2.abi is the input file corresponding to T = 300 K, whereas tatdep1_3.abi is the one for T = 50 K. You can compare them :
vimdiff tatdep1_2.abi tatdep1_3.abi
Three lines are different : the ones corresponding to temperature, rprimd and rcut. The equilibrium volume reduces between 300 K and 50 K so rprimd has been changed. In conjunction, rcut has to be reduced in order to be lower than half the smallest supercell lattice parameter (which is the first dimension of the supercell). Now you can execute atdep for these two temperatures :
atdep < tatdep1_2.files > log 2> err &
atdep < tatdep1_3.files > log 2> err &
For the moment, we are interested in the phonon spectra. You can plot them together :
xmgrace -nxy tatdep1_2omega.dat -nxy tatdep1_3omega.dat
You shoud obtain this picture :

By using only 20 configurations we are able to reproduce the softening of the \Sigma_4 branch of U-\alpha as a function of the temperature. However, this agreement is more qualitative than quantitative. A strict comparison with the converged phonon spectrum displayed at the begining shows that the differences at 300 K are significative. Moreover, the elastic moduli obtained at T = 300 K (in the tatdep1_2.abo output file)_ are :
 ============================== Hill average =================================
 ISOTHERMAL modulus [in GPa]: Bulk Kt=   51.471 and Shear G=   72.431
 Average of Young modulus E [in GPa]=  147.911 Lame modulus Lambda [in GPa]=    3.184 and Poisson ratio Nu=    0.021
 Velocities [in m.s-1]: compressional Vp= 2788.977  shear Vs= 1950.784  and bulk Vphi= 1644.481
 Debye velocity [in m.s-1]= 2118.561  and temperature [in K]=  229.468
If we compare the bulk modulus to the one obtained by DFPT (see the PRB 88, 134202 (2013)) and experiments (see the PR 29, 1473 (1958)), we obtain :
| Work | K | 
|---|---|
| Present (300 K) | 51 | 
| DFPT (0 K) | 129 | 
| Expt (300 K) | 115 | 
This quantity is very far from the ones obtained by DFPT and experiments.
3.3 Elastic moduli and size effect¶
In this part we will focus on the bulk modulus and the discrepancies obtained previously. The tatdep1_4.abi is the same input file as tatdep1_2.abi except that the first dimension of the supercell is increased. You can compare them :
vimdiff tatdep1_2.abi tatdep1_4.abi
Along the [100] direction, the multiplicity is no longer 4 but 6. Consequently, the number of atoms natom is no longer 96 but 144 and rcut can be increased to 11.09 a.u. (half of the second dimension). This leads to have a supplementary shell of coordination in the calculation :
 Shell number:          13
  Between atom    1 and    49 the distance is=   10.7900000000
   Number of independant coefficients in this shell=           4
   Number of interactions in this shell=           2
This one is at a distance equal to 10.79 a.u., which is exactly twice the unitcell lattice parameter along the [100] direction (5.395 a.u.). There are only 2 atoms in this shell : at the [-200] and [200] positions. If you search the coefficients of this IFC using the keyword “ishell= 13”, you will find :
 ======== NEW SHELL (ishell=  13): There are   2 atoms on this shell at distance=10.790000
  For jatom=  49 ,with type=   1
  -0.008388 -0.000138  0.000000
   0.000138 -0.000245  0.000000
   0.000000  0.000000 -0.002201
  The components of the vector are:   10.790000    0.000000    0.000000
  Trace= -0.010834
  For jatom=  97 ,with type=   1
  -0.008388  0.000138  0.000000
  -0.000138 -0.000245  0.000000
   0.000000  0.000000 -0.002201
  The components of the vector are:  -10.790000    0.000000    0.000000
  Trace= -0.010834
The contribution of this shell is very large compared to the others. This can be seen on the “Trace” of the IFC matrix, its absolute value (-0.010834) is lower than the one obtained for the 1st shell (the onsite contribution) and the 2nd shell, almost equal to the one obtained for the 4th shell but higher than all the others. This 13th shell contributes to the phase transition between U-\alpha and U-\alpha_1. This one is reponsible for the twofold of the unitcell along the [100] direction at low temperature, so it was absolutely necessary to include it in the calculation.
Using only 20 atomic configurations, we cannot see any quantitative improvement of the phonon spectrum (more steps are needed). However we can note a significant effect on the elastic moduli :
 ============================== Hill average =================================
 ISOTHERMAL modulus [in GPa]: Bulk Kt=  106.876 and Shear G=   85.533
 Average of Young modulus E [in GPa]=  202.562 Lame modulus Lambda [in GPa]=   49.854 and Poisson ratio Nu=    0.184
 Velocities [in m.s-1]: compressional Vp= 3406.949  shear Vs= 2119.896  and bulk Vphi= 2369.674
 Debye velocity [in m.s-1]= 2336.400  and temperature [in K]=  253.063
| Work | K | 
|---|---|
| Present (300 K) | 107 | 
| DFPT^1 (0 K) | 129 | 
| Expt^2 (300 K) | 115 | 
In conclusion, we can have in mind that the elastic constants/moduli (fixed by the slope of the acoustic branches at the \Gamma point ; i.e. at long range) need to have very large supercell. See the following paper for more details : Schnell et al., PRB 74, 054104 (2006).
4. Dynamic stabilization due to anharmonic effects : U-\gamma¶
4.1 Strong anharmonicity¶
This calculation is similar to the one performed in the following article [Bouchet2017]. The U-\alpha orthorombic phase is stable up to 940 K, then the U-\beta body-centered tetragonal phase is stable up to 1050 K, and finally the U-\gamma body-centered cubic phase is stable up to the melting point. In this section, we will focus on this later. Using DFPT, the phonon spectrum of the U-\gamma phase shows many soft modes (see the Figure 4 of [Bouchet2017]). This phase is dynamically instable at T = 0 K. Consequently, it is impossible to deduce anything about its dynamic, elastic and thermodynamic properties. For a long time, the stability of this phase is expected to come from anharmonic effects. That’s we will show in the following.
Before proceeding, you can copy the next series of input files in the current directory.
cp ../tatdep1_5.* . 
You can now open the input file :
NormalMode #DEFINE_UNITCELL brav 7 -1 natom_unitcell 1 xred_unitcell 0.0 0.0 0.0 typat_unitcell 1 ntypat 1 amu 2.38028900E+02 #DEFINE_SUPERCELL rprimd 26.0647552 0.0000000 0.0000000 0.0000000 26.0647552 0.0000000 0.0000000 0.0000000 26.0647552 multiplicity 0 4 4 4 0 4 4 4 0 natom 128 typat 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 temperature 9.00000000E+02 #DEFINE_COMPUTATIONAL_DETAILS nstep_max 20 nstep_min 1 rcut 13.03 #OPTIONAL_INPUT_VARIABLES bzpath 5 G H P G N use_ideal_positions 1 enunit 1 TheEnd #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = atdep #%% md_hist = tatdep1_5 #%% [files] #%% files_to_test = #%% tatdep1_5.abo, tolnlines = 1, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% tatdep1_5omega.dat, tolnlines = 5, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% tatdep1_5thermo.dat, tolnlines = 5, tolabs = 2.e-3, tolrel = 1.e-4, fld_options = -medium; #%% [paral_info] #%% max_nprocs = 10 #%% [extra_info] #%% authors = F. Bottin & J. Bouchet #%% keywords = atdep #%% description = #%% test aTDEP #%% topics = aTDEP #%%<END TEST_INFO>
As can be seen in the first lines, U-\gamma is a cubic (brav(1)=7) body-centered (brav(2)=-1) phase with one atom in the unitcell. Three optional input parameters are set : enunit=1 (the frequency unit is cm^{-1}), bzpath=5 G H P G N (the BZ path is \Gamma-H-P-\Gamma-N) and use_ideal_positions=1 (the atomic displacements are computed wrt the bcc ideal positions). Now you can execute atdep :
atdep < tatdep1_5.files > log 2> err &
You can plot the phonon spectrum of U-\gamma : tatdep1_5omega.dat. This one is almost equal to the one published in [Bouchet2017]. All the soft modes (around \Gamma, N and H) obtained using DFPT are now positive. This shows that the phase is now dynamically stable at T = 900 K (even if this phase is not yet thermodynamically stable). However, we can see that the system is on the verge of instability. The transverse branches at the N point are very low and the Born criterion for cubic systems (C_{11}-C_{12}>0) highlighting the mechanical stability is hardly fulfilled.
4.2 Thermodynamics¶
Since we have the phonon spectrum (and the vDOS) of the U-\gamma phase, we can now compute its thermodynamic properties (see the tatdep1_5thermo.dat file) and compare them to the ones obtained for the U-\alpha phase (see the tatdep1_4thermo.dat file). Let us evaluate the thermodynamic stability of U-\gamma phase wrt to the U-\alpha one. For this purpose, we will focus on the data extrapolated at the harmonic level (the second part of these two *thermo.dat files). If we plot the total free energy of these two phases, we obtain :

We otbain that the phase transition between the U-\alpha and the U-\gamma phases is around T = 900 K, which is in very good agreement with experiments. You can see that he stabilization of the U-\gamma phase wrt the U-\alpha one comes from the entropy :
vimdiff tatdep1_5thermo.dat tatdep1_4thermo.dat
Note
The previous approach is very rough. Indeed, we used the results obtained at T = 300 K for U-\alpha and at T = 900 K for U-\gamma, and extrapolated their free energies using the harmonic approximation. Moreover, we neglected the thermal pressure coming from each calculation. To be more accurate, we should compute the Gibbs free energy of each phase at several temperatures, make an interpolation, then compare them together. That’s done in the Figure 7 of [Bouchet2017].
4.3 U-\gamma with 2 atoms in the unitcell.¶
At last, we would ask the user to consider the U-\gamma phase as a simple cubic phase with 2 atoms in the unitcell.
To do that, we suggest the user to copy the previous input file in tatdep1_6.abi and to modify the following input variables : brav(2)=0 since the system is now simple cubic, natom_unitcell=2 since there is two atoms in the unitcell, xred_unitcell=0 0 0 0.5 0.5 0.5, typat_unitcell=1 1, multiplicity=4 0 0 0 4 0 0 0 4 since the supercell is now just four times the conventional cell, and remove the line with bzpath since this path is no longer suited for a simple cubic.
You can now modify the files file tatdep1_5.files (in order to take into account the new input file and to prevent the previous output files from being overwritten) as follows :
tatdep1_6.abi
tatdep1_5
tatdep1_6
and execute atdep :
atdep < tatdep1_5.files > log 2> err &
It’s now possible to compare the thermodynamics of the “bcc” and “sc” phases by doing :
vimdiff tatdep1_6thermo.dat tatdep1_5thermo.dat
You can see that the free energy, the entropy, the specific heat… are equal. The thermodynamics of the system is the same, whatever the “cell description” we can assume. This invariance is satisfactory from a scientific point of view.
The user can try to do the same job for Aluminum (note : the conventional cell has 4 atoms).